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a b s t r a c t

We study three resistance distance-based graph invariants: the Kirchhoff index, and
two modifications, namely, the multiplicative degree-Kirchhoff index and the additive
degree-Kirchhoff index. Recently, one of the present authors (2014) and Sun et al. (2014)
independently obtained (different) formulas for the Kirchhoff index of subdivisions of
graphs. Huang et al. (2014) treated the Kirchhoff index of triangulations of graphs. In
our paper, first we derive formulae for the additive degree-Kirchhoff index and the
multiplicative degree-Kirchhoff index of subdivisions and triangulations, as well as a
new formula for the Kirchhoff index of triangulations, in terms of invariants of G. Then
comparisons are made between each of our Kirchhoffian graph invariants for subdivision
and triangulation. Finally, formulae for these graph invariants of iterated subdivisions and
triangulations of graphs are obtained.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Distance based graph invariants, such as theWiener index, and the Szeged index, have beenwidely studied (see, e.g. [1,5,
9,18,26,25,23,30,29] and references therein). In 1993, a newdistance function, named resistance distance [28],was identified
as an alternative of the ordinary (shortest path) distance. This new intrinsic graph metric, which comes from electrical
network theory and generalizes the ordinary distance to some extent, turns out to have many nicely pure mathematical
interpretations [7,12,27,24,31,36,40,41,45]. Since then, resistance distance, and invariants based on it, have been extensively
studied.

Let G = (V (G), E(G)) be a connected graph. The resistance distance [37–39,20,28] between a pair of vertices i and j,
denoted by Ωij, is the net effective resistance measured across nodes i and j in the electrical network constructed from
G by replacing each edge with a unit resistor.

Analogous to distance-based graph invariants, various graph invariants based on resistance distance have been defined
and studied. Among these invariants, the most famous one is the Kirchhoff index [28], also known as the total effective
resistance [17] or the effective graph resistance [13], which is denoted by R(G) and defined as the sum of resistance distances
between all pairs of vertices of G, i.e.

R(G) =


{i,j}⊆V

Ωij. (1)
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Fig. 1. Graphs S(K5) and T (K5).

Much attention has been given in recent years to this index. For more information, the readers are referred to most recent
papers [2,4,8,10,11,32,42,50,49,51] and references therein.

Recently, two modifications of the Kirchhoff index, which takes the degrees of the graph into account, have been
considered. One is themultiplicative degree-Kirchhoff index defined by Chen and Zhang [6]:

R∗(G) =


{i,j}⊆V

didjΩij, (2)

where di is the degree (i.e., the number of neighbors) of the vertex i. The other one is the additive degree-Kirchhoff index
defined by Gutman et al. [19]:

R+(G) =


{i,j}⊆V

(di + dj)Ωij. (3)

For more work on these two modifications, the readers are referred to recent papers [3,14,21,33,34,48].
The subdivision of G, denoted by S(G), is the graph obtained by replacing every edge in G with a copy of P2 (path of

length two). The triangulation [46,35] of G, denoted by T (G), is the graph obtained from G by changing each edge uv of G
into a triangle uwv with w the new vertex associated with uv. For example, the subdivision and the triangulation of the
five-vertex complete graph K5 are shown in Fig. 1.

In [16], Gao et al. obtained a formula for the Kirchhoff index of S(G) for a regular graph G. Then one of the present
authors [48], and Sun et al. [43] independently extended it to general graphs, with R(S(G)) being expressed in different
ways. In [48], it is shown that for a general graph G, the Kirchhoff index of S(G) could be expressed in terms of R(G), R+(G),
R∗(G), |V (G)|, and |E(G)|. For the triangulation of a regular graph G, Wang et al. [44] obtained a formula for R(T (G)). Then
Huang et al. [22] generalized their results to general graphs, though this formula features the group inverse L#(G) of the
Laplacian matrix of G in their expression. In this paper, we obtain a new formula for R(T (G)), expressed in terms of ordinary
graph invariants of G, much as for S(G). In addition, formulae for the additive degree-Kirchhoff index and the multiplicative
degree-Kirchhoff index of S(G) and T (G) are obtained in terms of the same graph invariants of G. From these results, for
each graph invariant I (I ∈ {R, R+, R∗

}), a comparison between I(S(G)) and I(R(G)) is obtained, to show that the I(S(G)) is a
linear function of the I(R(G)). Finally, formulae for the three resistance distance-based graph invariants of the k-th iterated
subdivision and triangulation of G are also obtained.

2. Formulae for R+(S(G)) and R∗(S(G))

Let G = (V (G), E(G)) be a connected graph with n vertices and m edges (n ≥ 2). In what follows, for simplicity, we use
V and E to denote V (G) and E(G), respectively. We suppose that |V | = n and |E| = m. For i ∈ V , we use Γ (i) to denote the
neighbor set of i in G. Since the subdivision graph S(G) is the graph obtained by inserting an additional vertex in each edge of
G, the vertex set V (S(G)) of S(G) may be written as V (S(G)) = V ∪ V ′, where V ′ denotes the set of inserted vertices. Clearly
|V ′

| = |E| = m and |V (S(G))| = n + m. In the following, for convenience, we use ΩS
ij to denote the resistance distance

between i and j in S(G).
In [7], Chen and Zhang gave a complete characterization to resistance distances in S(G) in terms of resistance distances

in G. Their result, as given in the following lemma, plays an essential rule.

Lemma 2.1 ([7]). Resistance distances in S(G) can be computed as follows:

(1) For i, j ∈ V ,

ΩS
ij = 2Ωij.
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