FISEVIER

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note The decycling number of generalized Petersen graphs[☆]

Liqing Gao, Xirong Xu*, Jian Wang, Dejun Zhu, Yuansheng Yang

School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, PR China

ARTICLE INFO

Article history: Received 17 February 2013 Received in revised form 27 August 2014 Accepted 2 September 2014 Available online 23 September 2014

Keywords: Graph theory Decycling set Decycling number Generalized Petersen graphs Cycles Acyclic subgraph

ABSTRACT

A subset $F \subset V(G)$ is called *a decycling set* if the subgraph G - F is acyclic. The minimum cardinality of a decycling set is called *the decycling number* of *G*, which is proposed first by Beineke and Vandell (1997). We use $\nabla(P_{n,k})$ to denote the decycling number of the generalized Petersen graphs $P_{n,k}$. This paper proves that

$$\nabla(P_{n,k}) = \begin{cases} \left\lceil \frac{n+1}{2} \right\rceil, & \text{if } n \neq 2k, \\ \left\lceil \frac{k+1}{2} \right\rceil, & \text{if } n = 2k. \end{cases}$$

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V, E) be a simple graph, with vertex set V and edge set E. A subset $F \subset V(G)$ is called *a decycling set* if the subgraph G - F is acyclic, that is, if G - F is a forest. The minimum cardinality of a decycling set is called *the decycling number* (or *feedback number*) of G, which is proposed first by Beineke and Vandell [3]. A decycling set of this cardinality is called a minimum decycling set (or *feedback set*).

Determining the decycling number of a graph G is equivalent to finding the greatest order of an induced forest of G proposed first by Erdős, Saks and Sós [4], since the sum of the two numbers equals the order of G. A review of several results and open problems on the decycling number was provided by Bau and Beineke [2].

In fact, the problem of finding the decycling number is *NP*-hard for graphs in general [7] (also see [6]). The best known approximation algorithm for this problem has approximation ratio 2 [1].

Determining the decycling number is quite difficult even for some elementary graphs. We refer the reader to an original research paper [3] for some results. Bounds on the decycling numbers have been established for some well-known graphs, such as hypercubes [5], star graphs [9], (n, k)-star graphs [10], distance graphs and circulant graphs [8].

In this paper, we consider a particular topology graph called a generalized Petersen graph. We use $\nabla(P_{n,k})$ to denote the decycling number of $P_{n,k}$, this paper proves that $\nabla(P_{n,k}) = \lceil \frac{n+1}{2} \rceil (n \neq 2k), \nabla(P_{2k,k}) = \lceil \frac{k+1}{2} \rceil$. The proof of the result is in Section 3. In Section 2, we obtain a lower bound of decycling number of $P_{n,k}$.

^k Corresponding author. Tel.: +86 0411 84706009. *E-mail address:* xirongxu@dlut.edu.cn (X. Xu).

http://dx.doi.org/10.1016/j.dam.2014.09.005 0166-218X/© 2014 Elsevier B.V. All rights reserved.

^{*} The work is supported by NNSF of China (No. 61170303, 61472465) and Scientific Research Fund of Liaoning Provincial Education Department (No. L2013337).

Fig. 2.1. The decycling sets of several $P_{n,k}$ graphs.

2. Lower bound of $\nabla(P_{n,k})$

The generalized Petersen graph $P_{n,k}$ is an important 3-regular graph on 2*n* vertices with $V(P_{n,k}) = \{a_i, b_i : 0 \le i \le n-1\}$ and $E(P_{n,k}) = \{a_ib_i, a_ia_{i+1}, b_ib_{i+k} : 0 \le i \le n-1\}$, subscripts mod $n\}$.

Clearly, $P_{n,k} \cong P_{n,n-k}$. So we only need to consider the case $k \le \frac{n}{2}$. As we shall see, although the methods of proof are similar, the results in the two cases of n = 2k and n > 2k are somewhat different, and so we state the results separately until the conclusion.

We first restate a lower bound on the size of the decycling set in any graph, due to Beineke and Vandell [3].

Lemma 2.1. If G is a graph with n vertices, m edges, and maximum degree $\Delta > 0$, then

$$abla(G) \geq \left\lceil \frac{m-n+1}{\Delta-1} \right\rceil.$$

Lemma 2.2. (a) $\nabla(P_{2k,k}) \ge \lceil \frac{k+1}{2} \rceil$. (b) For $k < \frac{n}{2}$, $\nabla(P_{n,k}) \ge \lceil \frac{n+1}{2} \rceil$.

Proof. The result follows at once from Lemma 2.1 and the observations that $P_{2k,k}$ has 4k vertices and 5k edges, and for k < n, $P_{n,k}$ has 2n vertices and 3n edges. \Box

In Fig. 2.1, we illustrate the decycling sets of several $P_{n,k}$ graphs with small n and k, where the vertices of decycling sets are solid. It is easy to check that all the decycling sets achieve lower bounds given by Lemma 2.2.

3. Decycling number of $P_{n,k}$

We now construct decycling sets that achieve these bounds. In order to simplify the proof, we first study cycles in $P_{n,k}$. Let $V_a = \{a_i | i = 0, 1, ..., n - 1\}$ and $V_b = \{b_i | i = 0, 1, ..., n - 1\}$, $G_a = G[V_a]$, $G_b = G[V_b]$. Let d = gcd(n, k).

Lemma 3.1. The graph G_b is the union of d disjoint cycles with length $\frac{n}{d}$ and each cycle can be represented by $Z_j = b_j b_{j+k} b_{j+2k} \cdots b_{j+(\frac{n}{2}-1)k} b_j$, subscripts modn, $j = 0, 1, 2, \ldots, d-1$.

Proof. Clearly for each $j \in \{0, 1, 2, ..., d-1\}$, the sequence j, $(j + k) \mod n$, $(j + 2k) \mod n$, $..., (j + ik) \mod n$, ..., will be periodic. If <math>i is the least positive integer for which $(j+ik) \mod n = j$, then we have $ik \equiv 0 \pmod{n}$. Since gcd(n, k) = d and i is minimum, we have $i = \frac{n}{d}$ and that means a period of the sequence is $\frac{n}{d}$, which implies $(b_j, b_{j+k}, b_{j+2k}, ..., b_{j+ik}, ..., b_{j+n-k})$ is a cycle with length $\frac{n}{d}$. In order to prove that different values of j give disjoint cycles, we assume $(j_1 + i_1k) \mod n = (j_2 + i_2k) \mod n$, then $j_1 - j_2 + (i_1 - i_2)k \equiv 0 \pmod{n}$, that is $j_1 - j_2 \equiv (i_2 - i_1)k \pmod{n}$. Since d|n, then we have $j_1 - j_2 \equiv (i_2 - i_1)k \pmod{d}$. Moreover d|k, then $j_1 - j_2 \equiv 0 \pmod{d}$. As $j_1 < d$, $j_2 < d$, finally we have $j_1 = j_2$. Thus, d cycles of graph G_b with length $\frac{n}{d}$ are disjoint from each other and each cycle can be represented by $Z_j = b_j b_{j+k} b_{j+2k} \cdots b_{j+(\frac{n}{d}-1)k} b_j$, subscripts modn, $j = 0, 1, 2, \ldots, d - 1$. \Box

Download English Version:

https://daneshyari.com/en/article/419009

Download Persian Version:

https://daneshyari.com/article/419009

Daneshyari.com