## Note

# The decycling number of generalized Petersen graphs ${ }^{\text {T }}$ 

Liqing Gao, Xirong Xu*, Jian Wang, Dejun Zhu, Yuansheng Yang<br>School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, PR China

## ARTICLE INFO

## Article history:

Received 17 February 2013
Received in revised form 27 August 2014
Accepted 2 September 2014
Available online 23 September 2014

## Keywords:

Graph theory
Decycling set
Decycling number
Generalized Petersen graphs
Cycles
Acyclic subgraph


#### Abstract

A subset $F \subset V(G)$ is called $a$ decycling set if the subgraph $G-F$ is acyclic. The minimum cardinality of a decycling set is called the decycling number of $G$, which is proposed first by Beineke and Vandell (1997). We use $\nabla\left(P_{n, k}\right)$ to denote the decycling number of the generalized Petersen graphs $P_{n, k}$. This paper proves that


$$
\nabla\left(P_{n, k}\right)= \begin{cases}\left\lceil\frac{n+1}{2}\right\rceil, & \text { if } n \neq 2 k \\ \left\lceil\frac{k+1}{2}\right\rceil, & \text { if } n=2 k\end{cases}
$$

© 2014 Elsevier B.V. All rights reserved.

## 1. Introduction

Let $G=(V, E)$ be a simple graph, with vertex set $V$ and edge set $E$. A subset $F \subset V(G)$ is called $a$ decycling set if the subgraph $G-F$ is acyclic, that is, if $G-F$ is a forest. The minimum cardinality of a decycling set is called the decycling number (or feedback number) of $G$, which is proposed first by Beineke and Vandell [3]. A decycling set of this cardinality is called a minimum decycling set (or feedback set).

Determining the decycling number of a graph $G$ is equivalent to finding the greatest order of an induced forest of $G$ proposed first by Erdős, Saks and Sós [4], since the sum of the two numbers equals the order of G. A review of several results and open problems on the decycling number was provided by Bau and Beineke [2].

In fact, the problem of finding the decycling number is NP-hard for graphs in general [7] (also see [6]). The best known approximation algorithm for this problem has approximation ratio 2 [1].

Determining the decycling number is quite difficult even for some elementary graphs. We refer the reader to an original research paper [3] for some results. Bounds on the decycling numbers have been established for some well-known graphs, such as hypercubes [5], star graphs [9], ( $n, k$ )-star graphs [10], distance graphs and circulant graphs [8].

In this paper, we consider a particular topology graph called a generalized Petersen graph. We use $\nabla\left(P_{n, k}\right)$ to denote the decycling number of $P_{n, k}$, this paper proves that $\nabla\left(P_{n, k}\right)=\left\lceil\frac{n+1}{2}\right\rceil(n \neq 2 k), \nabla\left(P_{2 k, k}\right)=\left\lceil\frac{k+1}{2}\right\rceil$. The proof of the result is in Section 3. In Section 2, we obtain a lower bound of decycling number of $P_{n, k}$.

[^0]
$$
\nabla\left(P_{5,1}\right)=3
$$


$\nabla\left(P_{5,2}\right)=3$


$\nabla\left(P_{6,1}\right)=4$


Fig. 2.1. The decycling sets of several $P_{n, k}$ graphs.

## 2. Lower bound of $\nabla\left(P_{n, k}\right)$

The generalized Petersen graph $P_{n, k}$ is an important 3-regular graph on $2 n$ vertices with $V\left(P_{n, k}\right)=\left\{a_{i}, b_{i}: 0 \leq i \leq n-1\right\}$ and $E\left(P_{n, k}\right)=\left\{a_{i} b_{i}, a_{i} a_{i+1}, b_{i} b_{i+k}: 0 \leq i \leq n-1\right.$, subscripts modn $\}$.

Clearly, $P_{n, k} \cong P_{n, n-k}$. So we only need to consider the case $k \leq \frac{n}{2}$. As we shall see, although the methods of proof are similar, the results in the two cases of $n=2 k$ and $n>2 k$ are somewhat different, and so we state the results separately until the conclusion.

We first restate a lower bound on the size of the decycling set in any graph, due to Beineke and Vandell [3].
Lemma 2.1. If $G$ is a graph with $n$ vertices, $m$ edges, and maximum degree $\Delta>0$, then

$$
\nabla(G) \geq\left\lceil\frac{m-n+1}{\Delta-1}\right\rceil
$$

Lemma 2.2. (a) $\nabla\left(P_{2 k, k}\right) \geq\left\lceil\frac{k+1}{2}\right\rceil$. (b) For $k<\frac{n}{2}, \nabla\left(P_{n, k}\right) \geq\left\lceil\frac{n+1}{2}\right\rceil$.
Proof. The result follows at once from Lemma 2.1 and the observations that $P_{2 k, k}$ has $4 k$ vertices and $5 k$ edges, and for $k<n$, $P_{n, k}$ has $2 n$ vertices and $3 n$ edges.

In Fig. 2.1, we illustrate the decycling sets of several $P_{n, k}$ graphs with small $n$ and $k$, where the vertices of decycling sets are solid. It is easy to check that all the decycling sets achieve lower bounds given by Lemma 2.2.

## 3. Decycling number of $\boldsymbol{P}_{\boldsymbol{n}, k}$

We now construct decycling sets that achieve these bounds. In order to simplify the proof, we first study cycles in $P_{n, k}$. Let $V_{a}=\left\{a_{i} \mid i=0,1, \ldots, n-1\right\}$ and $V_{b}=\left\{b_{i} \mid i=0,1, \ldots, n-1\right\}, G_{a}=G\left[V_{a}\right], G_{b}=G\left[V_{b}\right]$. Let $d=\operatorname{gcd}(n, k)$.

Lemma 3.1. The graph $G_{b}$ is the union of disjoint cycles with length $\frac{n}{d}$ and each cycle can be represented by $Z_{j}=$ $b_{j} b_{j+k} b_{j+2 k} \cdots b_{j+\left(\frac{n}{d}-1\right) k} b_{j}$, subscripts modn, $j=0,1,2, \ldots, d-1$.

Proof. Clearly for each $j \in\{0,1,2, \ldots, d-1\}$, the sequence $j,(j+k) \bmod n,(j+2 k) \bmod n, \ldots,(j+i k) \bmod n, \ldots$ will be periodic. If $i$ is the least positive integer for which $(j+i k) \bmod n=j$, then we have $i k \equiv 0(\bmod n)$. Since $\operatorname{gcd}(n, k)=d$ and $i$ is minimum, we have $i=\frac{n}{d}$ and that means a period of the sequence is $\frac{n}{d}$, which implies $\left(b_{j}, b_{j+k}, b_{j+2 k}, \ldots, b_{j+i k}, \ldots, b_{j+n-k}\right)$ is a cycle with length $\frac{n}{d}$. In order to prove that different values of $j$ give disjoint cycles, we assume $\left(j_{1}+i_{1} k\right) \bmod n=$ $\left(j_{2}+i_{2} k\right) \bmod n$, then $j_{1}-j_{2}+\left(i_{1}-i_{2}\right) k \equiv 0(\bmod n)$, that is $j_{1}-j_{2} \equiv\left(i_{2}-i_{1}\right) k(\bmod n)$. Since $d \mid n$, then we have $j_{1}-j_{2} \equiv\left(i_{2}-i_{1}\right) k(\bmod d)$. Moreover $d \mid k$, then $j_{1}-j_{2} \equiv 0(\bmod d)$. As $j_{1}<d, j_{2}<d$, finally we have $j_{1}=j_{2}$. Thus, $d$ cycles of graph $G_{b}$ with length $\frac{n}{d}$ are disjoint from each other and each cycle can be represented by $Z_{j}=b_{j} b_{j+k} b_{j+2 k} \cdots b_{j+\left(\frac{n}{d}-1\right) k} b_{j}$, subscripts $\bmod n, j=0,1,2, \ldots, d-1$.

# https://daneshyari.com/en/article/419009 

Download Persian Version:
https://daneshyari.com/article/419009

## Daneshyari.com


[^0]:    The work is supported by NNSF of China (No. 61170303, 61472465) and Scientific Research Fund of Liaoning Provincial Education Department (No. L2013337).

    * Corresponding author. Tel.: +86 041184706009.

    E-mail address: xirongxu@dlut.edu.cn (X. Xu).

