ELSEVIER

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note

On the general sum-connectivity index of connected unicyclic graphs with *k* pendant vertices

Ioan Tomescu^{a,*}, Misbah Arshad^b

- ^a Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei, 14, 010014 Bucharest, Romania
- ^b Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan

ARTICLE INFO

Article history: Received 7 May 2014 Received in revised form 26 August 2014 Accepted 29 August 2014 Available online 22 September 2014

Keywords:
Unicyclic graph
Pendant vertex
General sum-connectivity index
Zeroth-order general Randić index
Jensen's inequality

ABSTRACT

In this paper, we show that in the class of connected unicyclic graphs G of order $n \geq 3$ having $0 \leq k \leq n-3$ pendant vertices, the unique graph G having minimum general sum-connectivity index $\chi_{\alpha}(G)$ consists of C_{n-k} and k pendant vertices adjacent to a unique vertex of C_{n-k} , if $-1 \leq \alpha < 0$. This property does not hold for zeroth-order general Randić index ${}^0R_{\alpha}(G)$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a simple graph having vertex set V(G) and edge set E(G). The degree of a vertex $u \in V(G)$ is denoted d(u). If d(u) = 1 then u is called pendant; a pendant edge is an edge containing a pendant vertex. The distance between vertices u and v of a connected graph, denoted by d(u, v), is the length of a shortest path between them. If $A \subset V(G)$ and $u \in V(G)$, the distance between u and v is v is the length of v denotes the subgraph of v obtained by deleting v and its incident edges.

For $n \ge 3$ and $0 \le k \le n-3$, let $C_{n-k,k}$ denote the unicyclic graph of order n consisting of a cycle C_{n-k} and k pendant edges attached to a unique vertex of C_{n-k} . For other notations in graph theory, we refer [1].

The general sum-connectivity index of graphs was proposed by Zhou and Trinajstić [10]. It is denoted by $\chi_{\alpha}(G)$ and defined as

$$\chi_{\alpha}(G) = \sum_{uv \in E(G)} (d(u) + d(v))^{\alpha},$$

where α is a real number. The sum-connectivity index, previously proposed by the same authors [9] is $\chi_{-1/2}(G)$. A particular case of the general sum-connectivity index is the harmonic index, denoted by H(G) and defined as

$$H(G) = \sum_{uv \in F(G)} \frac{2}{d(u) + d(v)} = 2\chi_{-1}(G).$$

^{*} Corresponding author. Tel.: +40 216880029; fax: +40 213156990.

E-mail addresses: ioan.tomescu@gmail.com, ioan@fmi.unibuc.ro (I. Tomescu), misbah_arshad15@yahoo.com (M. Arshad).

The zeroth-order general Randić index, denoted by ${}^{0}R_{\alpha}(G)$ is defined as

$${}^{0}R_{\alpha}(G) = \sum_{u \in V(G)} d(u)^{\alpha},$$

where α is a real number. For $\alpha = 2$ this index is also known as first Zagreb index (see [5]).

Pan, Xu and Yang [6] proved that in the set of unicyclic connected graphs of order n with k pendant vertices minimum Randić index is reached only for $C_{n-k,k}$ and Chen and Li [2] showed that the same result also holds for sum-connectivity index. Other extremal properties of the sum-connectivity or general sum-connectivity index for trees, unicyclic graphs and general graphs were proposed in [3,4,7,8].

In this paper, we study the minimum general sum-connectivity index $\chi_{\alpha}(G)$ in the class of connected unicyclic graphs G of order $n \geq 3$ with k pendant vertices, thus extending the results of Chen and Li for every $-1 \leq \alpha < 0$ (including here the case of the harmonic index).

In Section 2 we prove some parametric inequalities which will be used in the last section. In Section 3 we determine the connected unicyclic graph *G* of order n > 3 with *k* pendant vertices (0 < k < n - 3) having minimum $\chi_{\alpha}(G)$ for $-1 < \alpha < 0$.

2. Some parametric inequalities

Let
$$f(n, k) = k(k+3)^{\alpha} + 2(k+4)^{\alpha} + (n-k-2)4^{\alpha}$$
. Note that $f(n, k) = \chi_{\alpha}(C_{n-k,k})$.

Lemma 2.1. The function f(n, k) is strictly decreasing in k > 0 for $-1 < \alpha < 0$.

Proof. Consider the function $\xi(x) = x(x+3)^{\alpha} + 2(x+4)^{\alpha} - x4^{\alpha}$, where x > 0. We deduce $\xi''(x) = \alpha[(x(1+\alpha)+6)(x+3)^{\alpha-2} + 2(\alpha-1)(x+4)^{\alpha-2}] < \alpha(x+4)^{\alpha-2}(x(1+\alpha)+2(2+\alpha)) < 0$. We will show that $\xi'(x) < 0$ for x > 0. Since $\xi'(x)$ is strictly decreasing, it is sufficient to prove that $\xi'(0) = 3^{\alpha} + 2\alpha 4^{\alpha-1} - 4^{\alpha} \le 0$. For this, consider the function $\eta(y) = 3^y - 4^y(1-y/2)$, where $-1 \le y \le 0$. We have $\eta(y) = 4^y\lambda(y)$, where $\lambda(y) = (\frac{3}{4})^y - 1 + y/2$, $\lambda'(-1) = \frac{4}{3} \ln \frac{3}{4} + \frac{1}{2} \approx 0.1164 > 0$ and $\lambda''(y) = (\frac{3}{4})^y(\ln \frac{3}{4})^2 > 0$. It follows that $\lambda'(y)$ is strictly increasing and $\lambda'(y) > 0$ on [-1, 0], therefore $\lambda(y)$ is strictly increasing on [-1, 0]. Since $\lambda(0) = 0$ we deduce that $\lambda(y) < 0$, hence $\eta(y) < 0$ on [-1, 0).

Lemma 2.2. The function

$$\psi(x) = 2(x+5)^{\alpha} + (x-1)(x+4)^{\alpha} - x(x+3)^{\alpha}$$

defined for x > 0 and $-1 < \alpha < 0$ is strictly decreasing.

Proof. We get

$$\frac{\psi''(x)}{\alpha} = 2(\alpha - 1)(x + 5)^{\alpha - 2} + (x(1 + \alpha) + 9 - \alpha)(x + 4)^{\alpha - 2} - (x(1 + \alpha) + 6)(x + 3)^{\alpha - 2}.$$

The function $x^{\alpha-2}$ being strict convex, by Jensen's inequality we obtain $(x+3)^{\alpha-2} > 2(x+4)^{\alpha-2} - (x+5)^{\alpha-2}$, which yields

$$\frac{\psi''(x)}{\alpha} < (x(1+\alpha) + 2\alpha + 4)(x+5)^{\alpha-2} - (x(1+\alpha) + 3 + \alpha)(x+4)^{\alpha-2}.$$

Note that $\frac{\psi''(x)}{\alpha} < 0$ is equivalent to $(1+\frac{1}{x+4})^{2-\alpha} > 1+\frac{\alpha+1}{x(\alpha+1)+\alpha+3}$. But $(1+\frac{1}{x+4})^{2-\alpha} > (1+\frac{1}{x+4})^2 > 1+\frac{2}{x+4}$ and $1+\frac{2}{x+4} > 1+\frac{\alpha+1}{x(\alpha+1)+\alpha+3}$ is equivalent to $x(\alpha+1)+2>2\alpha$, which is true. It follows that $\psi''(x)>0$, hence $\psi'(x)$ is strictly increasing. Since $\lim_{x\to\infty}\psi'(x)=0$ it follows that $\psi''(x)<0$, thus implying the conclusion of the theorem. \square

The following inequalities may be deduced in a straightforward way:

Lemma 2.3. (a) Let x > 0. If $\alpha < 0$ or $\alpha > 1$ then $(1+x)^{\alpha} > 1 + \alpha x$, but for $0 < \alpha < 1$ we have $(1+x)^{\alpha} < 1 + \alpha x$. (b) Let x > 0. If $\alpha < 0$ or $1 < \alpha < 2$ then $(1+x)^{\alpha} < 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2$ (for $\alpha = 2$ equality holds) and for $0 < \alpha < 1$ or $\alpha > 2$ we get $(1+x)^{\alpha} > 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2$.

(c) If
$$x > 0$$
, $0 < \alpha \le 1$ we have $(1+x)^{\alpha} < 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3$.

Lemma 2.4. The function $\varphi(x) = (x+1)^{\alpha} + (x-2)((x+1)^{\alpha} - x^{\alpha}) + (x+s)^{\alpha} - (x+s-1)^{\alpha}$ defined for $x \ge 1$ is strictly decreasing for every fixed $s \ge 2$ and $-1 \le \alpha < 0$.

Proof. Because function $(x + s)^{\alpha - 1} - (x + s - 1)^{\alpha - 1}$ is increasing in s, it follows that

$$(x+s)^{\alpha-1} - (x+s-1)^{\alpha-1} \ge (x+2)^{\alpha-1} - (x+1)^{\alpha-1}$$

which implies that $\varphi'(x) \leq \alpha (x+2)^{\alpha-1} + (x+1)^{\alpha} - x^{\alpha} + \alpha (x-2)(x+1)^{\alpha-1} - \alpha (x-2)x^{\alpha-1} = \alpha (x+2)^{\alpha-1} + (x+1+\alpha x - 2\alpha)(x+1)^{\alpha-1} - (x+\alpha x - 2\alpha)x^{\alpha-1} = (x+2)^{\alpha-1}[\alpha + (x(1+\alpha) + 1 - 2\alpha)\left(1 + \frac{1}{x+1}\right)^{1-\alpha} - (x(1+\alpha) - 2\alpha)\left(1 + \frac{2}{x}\right)^{1-\alpha}].$ Since $1 < 1 - \alpha \leq 2$, by Lemma 2.3(a), (b) we get $(1 + \frac{1}{x+1})^{1-\alpha} \leq 1 + \frac{1-\alpha}{x+1} - \frac{\alpha(1-\alpha)}{2(x+1)^2}$ and $(1 + \frac{2}{x})^{1-\alpha} > 1 + \frac{2(1-\alpha)}{x}$. This

Download English Version:

https://daneshyari.com/en/article/419011

Download Persian Version:

https://daneshyari.com/article/419011

<u>Daneshyari.com</u>