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a b s t r a c t

Circular-arc graphs are the intersection graphs of open arcs on a circle. Circle graphs are
the intersection graphs of chords on a circle. These graph classes have been the subject
of much study for many years and numerous interesting results have been reported.
Many subclasses of both circular-arc graphs and circle graphs have been defined and
different characterizations formulated. In this survey, we summarize the most important
structural results related to circular-arc graphs and circle graphs and present themain open
problems.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The aim of this article is to summarize the most important known structural results on circular-arc graphs and circle
graphs. We hope this survey can be helpful to those researchers who work on subjects related to these graph classes. In this
introductory section, some remarkable structural results are briefly presented.

Circular-arc graphs are the intersection graphs of a set S of arcs on a circle; such a set S is called a circular-arc model. The
first works about this class of graphs were published by Hadwiger et al. in 1964 [36] and Klee in 1969 [44]. Nevertheless,
the first researcher who dealt with the problem of characterizing by forbidden subgraphs this family of graphs was Tucker
in his Ph.D. thesis in 1969 [66]. He introduced andmanaged to characterize by forbidden induced subgraphs two subclasses
of circular-arc graphs, namely unit circular-arc graphs and proper circular-arc graphs. The first subclass consists of those
circular-arc graphs having a circular-arc model with all its arcs having the same length and the second one consists of those
circular-arc graphs having a circular-arc model without any arc contained in another. The first polynomial-time recognition
algorithm for circular-arc graphs was devised by Tucker in 1980 [70]. In 1995, Hsu presented a O(mn)-time recognition
algorithm. A linear-time recognition algorithm was proposed by McConnell in 2003 [53].

Characterizing by forbidden induced subgraphs the whole class of circular-arc graphs is a long standing open
problem [44,65,69]. Nevertheless, several authors have presented some advances in this direction. Trotter and Moore gave
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a characterization by forbidden induced subgraphs within the class of co-bipartite graphs [65]; i.e., they found the complete
list of induced subgraphs that have to be forbidden in a co-bipartite graph in order to ensure that such a graph is circular-arc.
Bang-Jensen and Hell presented a structural theorem for proper circular-arc graphs within the class of chordal graphs [3]
that implies the characterization by forbidden induced subgraphs for proper circular-arc graphs within the class of chordal
graphs. In [4] characterizations by minimal forbidden induced subgraphs of circular-arc graphs were presented, in the case
where the graph belongs to any of the following four different classes: P4-free graphs, paw-free graphs, claw-free chordal
graphs and diamond-free graphs.

Circular-arc graphs are a generalization of the family of the intersection graphs of intervals in the real line, called interval
graphs. Interval graphs were characterized by Lekkerkerker and Boland in 1962 [47]. The whole list of forbidden induced
subgraphs that characterizes interval graphs was successfully found via a different characterization by means of asteroidal
triples presented by the same authors. Any set of intervals in the real line satisfies the Helly property; i.e., any set of pairwise
intersecting intervals in the real line have a common point. Consequently, a subclass of circular-arc graphs that naturally
generalizes interval graphs are the Helly circular-arc graphs; i.e., those circular-arc graphs having an intersection model of
arcs such that any subset of pairwise intersecting arcs has a common point. Lin and Szwarcfiter presented a characterization
by forbidden structures for this class within the class of circular-arc graphs [50]. Such a characterization yields a linear-
time recognition algorithm for the class of Helly circular-arc graphs. [18] introduced the class of proper Helly circular-arc
graphs, those graphs having a circular-arc model which is simultaneously proper and Helly. This class was characterized by
forbidden induced subgraphs in [49].

A circular-arc graph having a circular-arc model without two arcs covering the whole circle is called a normal circular-
arc graph. This terminology was introduced in [51]. Hell and Huang proved that the complements of interval bigraphs are
exactly those co-bipartite graphs having a normal circular-arc model [39]. A bipartite graph H , with a fixed partition (X, Y ),
is an interval bigraph if the vertices of H can be represented by a family of intervals Iv, v ∈ X ∪ Y , so that, for x ∈ X and
y ∈ Y , x and y are adjacent in H if and only if Ix and Iy intersect. Generalizing circular-arc graphs, Alcón et al. introduced the
class of loop graphs [1].

Fulkerson and Gross [25] characterized interval graphs in terms of their clique matrices. They were able to prove that
the clique matrix of interval graphs satisfies the consecutive 1s property for rows. Following this line of work, Roberts [60]
characterized proper interval graphs as those graphs whose augmented adjacency matrix has the consecutive 1s property
for columns; i.e., its rows can be permuted in such a way that in each column the 1s appear consecutively. Results in this
direction were obtained by Tucker and Gavril for circular-arc graphs and proper interval graphs in [68,30].

A graph is defined to be circle if it is the intersection graph of a setC of chords on a circle, such a set is called a circlemodel.
Circle graphs were introduced by Even and Itai in [21] to solve an ordering problem with the minimum number of parallel
stacks without the restriction of loading before unloading is completed, proving that the problem can be translated into the
problem of finding the chromatic number of a circle graph. Unfortunately, this problem turns out to be NP-complete [28].

Naji characterized circle graphs in terms of the solvability of a system of linear equations, yielding an O(n7)-time
recognition algorithm for this class [54]. The local complement of a graphGwith respect to a vertex u ∈ V (G) is the graphG∗u
that arises from G by replacing the induced subgraph G[NG(u)] by its complement. Two graphs G and H are locally equivalent
if and only if G arises from H by a finite sequence of local complementations. Bouchet proved that circle graphs are closed
under local complementation, as well as that a graph is circle if and only if every locally equivalent graph contains none of
three prescribed graphs as induced subgraphs [8]. Inspired by this result, Geelen and Oum [31] gave a new characterization
of circle graphs in terms of pivoting (see Section 4.2).

A circle graph with a circle model having all its chords of the same length is called a unit circle graph. It is well known
that the class of proper circular-arc graphs is properly contained in the class of circle graphs. Furthermore, the class of unit
circular-arc graphs and the class of unit circle graphs are the same [19].

Let G1 and G2 be two graphs such that |V (Gi)| ≥ 3, for each i = 1, 2, and assume that V (G1) ∩ V (G2) = ∅. Let vi be a
distinguished vertex of Gi, for each i = 1, 2. The split composition of G1 and G2 with respect to v1 and v2 is the graph G1 ◦ G2
whose vertex set isV (G1◦G2) = (V (G1)∪V (G2))\{v1, v2} andwhose edge set is E(G1◦G2) = E(G1−{v1})∪E(G2−{v2})∪{uv :

u ∈ NG1(v1) and v ∈ NG2(v2)}. The vertices v1 and v2 are called the marker vertices. We say that G has a split decomposition
if there exist two graphs G1 and G2 with |V (Gi)| ≥ 3, i = 1, 2, such that G = G1 ◦ G2 with respect to some pair of marker
vertices. If so, G1 and G2 are called the factors of the split decomposition. Those graphs that do not have a split decomposition
are called prime graphs. The concept of split decomposition is due to Cunningham [15]. Circle graphs turned out to be closed
under this decomposition [6] and in 1994 Spinrad presented a quadratic-time recognition algorithm for circle graphs that
exploits this peculiarity [63]. Also based on split decomposition, Paul [58] presented an O((n+m)α(n+m))-time algorithm
for recognizing circle graphs, where α is the inverse of the Ackermann function.

Circle graphs are a superclass of permutation graphs. Indeed, permutation graphs can be defined as those circle graphs
having a circle model such that a chord can be added in such a way that this chord meets all the chords belonging to the
circle model. On the other hand, permutation graphs are those comparability graphs whose complement graph is also a
comparability graph [22]. Since comparability graphs have been characterized by forbidden induced subgraphs [27], such a
characterization implies a forbidden induced subgraphs characterization for the class of permutation graphs.

Helly circle graphs are those graphs having a circlemodelwhose chords satisfy theHelly property; i.e., every set of pairwise
adjacent chords has a common point. This family of graphs was introduced in [18,19]. It was also conjectured there that a
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