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a b s t r a c t

In this paper two new characterizations of acyclic graphs are introduced. Additionally,
restricted versions of them are also proposed to address some important special cases.
These restricted characterizations, in turn, were used to obtain new integer programming
formulations for some associated relevant NP-hard problems. Resulting formulations are
compact, in the sense that the number of variables and constraints they contain are
polynomially bounded. One of them, in particular, that for the homogeneous version of
the Probabilistic Minimum Spanning Tree Problem, under a MILP solver, is used here to
obtain, for the first time, proven optimal solutions to that problem.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be an undirected and not necessarily connected graphwith a set V of n = |V | nodes and a set E ofm = |E|
edges. G is called acyclic if it contains no cycles, i.e., if no sequence of nodes v1, v2, . . . , vp exists such that p > 2, v1 = vp
and, for every 1 ≤ i < p, vi and vi+1 are the end nodes of an edge of G. Acyclic graphs are fundamental structures in Graph
Theory and are at the core of various relevant practical applications.

In this paper two new characterizations of acyclic graphs are introduced. Additionally, to address some important special
cases, restricted versions of them are also described. Finally, as a result of latter characterizations, new polynomial size
integer programming formulations are obtained for some NP-hard problems.

Throughout the paper, an edge of E is denoted by e = {i, j}, where end nodes i, j ∈ V are such that i < j applies. Edges
that are incident to i ∈ V define a set δi while δe

i identifies, for any e ∈ δi, those edges in δi \ {e}. If G is acyclic, removal of
any edge e = {i, j} ∈ E gives rise to two connected components, C e

i and C e
j . The former containing i, the latter containing j.

Finally, Ne
i and Ne

j denote the number of nodes respectively in C e
i and C e

j .
The paper is organized as follows. In Section 2 we introduce two theorems characterizing acyclic graphs. Still in

that section, corollaries of these theorems are suggested to characterize two important special cases. Namely, diameter
constrained and edge betweenness centrality constrained acyclic graphs. In Section 3 the corollaries are used to obtain
new integer programming formulations for the following problems: the Diameter Constrained Minimum Spanning Tree
Problem, the Capacitated Minimum Spanning Tree Problem and the homogeneous version of the Probabilistic Minimum
Spanning Tree Problem. Next, in Section 4, computational results are presented for the latter problem. Finally, the paper is
closed in Section 5 with some concluding remarks and suggestions for future work.
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2. Edge labeling characterizations for acyclic graphs

Two different characterizations of acyclic graphs are introduced in this section. Restricted versions of them, implying
tailor made characterizations for some special acyclic graphs, then follow.

Theorem 2.1 (First Characterization of Acyclic Graphs). Assume that a graph G′ = (V ′, E ′) is given and that real valued numbers
{αe : e ∈ E ′} are to be assigned to its edges. GraphG′ is acyclic if and only if an assignment existswhere, for any edge e = {i, j} ∈ E ′,
αe > αa for all a ∈ δe

i or αe > αa for all a ∈ δe
j .

Proof. → Assume that G′ is acyclic and consider any edge e = {i, j} ∈ E ′. Accordingly, let Pe
i (resp. Pe

j ) be the longest path
in C e

i (resp. C e
j ) having i (resp. j) as an end node. Additionally, denote by ne

i and ne
j the number of vertices respectively in Pe

i
and Pe

j and take αe = min{ne
i , n

e
j }. Without loss of generality, assume that αe = ne

i . Then, αe > αa results for any a ∈ δe
i . To

show that, take an edge a ∈ δe
i and apply the assignment procedure to it. Denote by k ∈ V the end node of a other than i and

notice that na
i = ne

j + 1 and that na
k ≤ ne

i − 1. Then, since na
k < ne

i it follows that αa < αe. As such the suggested assignment
satisfies the requirements imposed by the theorem.
←Now assume that G′ contains a cycle and show, in this case, that no assignment satisfying the conditions set out above

is possible. To reach a contradiction, assume that such an assignment exists and consider the cycle implied by an ordered
sequence of edges e1, e2, . . . , ec , for c ≥ 3, where e1 and ec are adjacent to each other while the same applies to ei and ei+1,
for i = 1, . . . , c− 1. For the desired property to hold, αe1 must be larger than αec or larger than αe2 . Assume, without loss of
generality, thatαe1 > αe2 . Sinceαe2 is smaller thanαe1 itmust therefore be larger thanαe3 . Proceeding in thisway onewould
end up having αec > αe1 , a contradiction, since αe1 > αe2 · · · > αec . Therefore, the proposed assignment is not possible. �

The above theorem can be adapted to characterize special cases of acyclic graphs. The two corollaries that follow
characterize diameter constrained acyclic graphs.

Corollary 2.2. Let D be an even number and G′ = (V ′, E ′) be an acyclic graph. G′ has diameter at most D if and only if an
assignment of integers {αe ∈ {1, 2, . . . ,D/2} : e ∈ E ′} is possible where, for any edge e = {i, j} ∈ E ′, αe > αa for all a ∈ δe

i or
αe > αa for all a ∈ δe

j .

Proof. → Assume that G′ has diameter at most D and assign numbers {αe : e ∈ E ′} to its edges, exactly as previously
suggested in the proof for Theorem 2.1. Accordingly, for any edge e = {i, j} ∈ E, min{ne

i , n
e
j } ≤ D/2 must necessarily hold.

This condition applies since, otherwise, the simple path Pe
i ∪{i, j}∪ Pe

j would contain more than D edges, thus contradicting
our assumption that G′ has diameter at most D.
← Now assume that G′ has diameter larger than D and that an assignment of integers to the edges of G′ exists satisfying

the conditions imposed by the corollary. Accordingly, consider a simple path P implied by an ordered sequence of edges
e1, e2, . . . , et−1, et , where t > D. Path P thus has more than twice as many edges as the largest integer value available to be
assigned to it. Therefore, a given integer a ∈ {1, . . . ,D/2} must be assigned to at least three different edges of P , i.e., ei, ej
and ek, where i < j < k. Given that this assignment should satisfy the conditions imposed by the corollary, amust be greater
than b, where b is the integer value assigned to an edge of P adjacent to ej. As such, for one of the two sub-paths ei, . . . , ej and
ej, . . . , ek, integers assigned to its edges must decrease from a to b and then increase from b to a. Therefore, the least value
integer assigned to an edge in that sub-path would not satisfy the conditions imposed by the corollary. A contradiction is
thus reached and therefore if an acyclic graph has diameter larger than D, the suggested assignment of integers to its edges
is not possible. �

Corollary 2.3. Let D be an odd number and G′ = (V ′, E ′) be an acyclic graph. G′ has diameter at most D if and only if an
assignment of integers {αe ∈ {1, 2, . . . , ⌈D/2⌉} : e ∈ E ′} exists where at most one edge per connected component is assigned
number ⌈D/2⌉ and, for any edge e = {i, j} ∈ E ′, αe > αa for all a ∈ δe

i or αe > αa for all a ∈ δe
j .

Proof. → As for the even case, assume that G′ has diameter at most D and assign numbers {αe : e ∈ E ′} to the edges of G′,
exactly as previously suggested in the proof for Theorem 2.1. Observe that, in this case, since the diameter of G′ is less than
or equal to D, min(|Pe

i |, |P
e
j |) must necessarily be smaller than or equal to ⌈D/2⌉ = (D+ 1)/2. This condition applies since,

otherwise, Pe
i ∪ {i, j} ∪ Pe

j would be a path containing more than D edges, thus contradicting our assumption that G′ has
diameter at most D. Now assume that at least two distinct edges, e = {i, j} and e′ = {u, v}, belonging to a same connected
component, were given a value of ⌈D/2⌉ in the proposed assignment. Further assume, without loss of generality, that these
two edges are connected to each other through a path R = j, p1, p2, . . . , pt , u that does not contain edges e and e′. Observe
that R may be an empty path if j = u and notice, irrespectively of this, that path Pe

i ∪ {i, j} ∪ R ∪ {u, v} ∪ Pe′
v would have

more than D edges. Therefore, value ⌈D/2⌉must be assigned to at most one edge per connected component.
← Now assume that G′ has diameter larger than D and that an assignment satisfying the conditions imposed by the

corollary do exists. Consider a simple path P implied by the ordered sequence of edges e1, e2, . . . , et−1, et , where t > D.
Given that only one of these t edges may be assigned number ⌈D/2⌉, the remaining t − 1 edges may only be assigned
numbers in the interval [1, ⌊D/2⌋]. Once again, one would have more than twice as many edges as the number of different
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