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a b s t r a c t

We address the problem of existence of an envy-free distribution of pieces among two
or more players in the cake-cutting setting with the minimum number of cuts. Our cakes
are discrete in the sense that the players’ valuations are concentrated on atoms. These
atoms are placed on an interval and no two players give positive values to atoms placed
at the same position. We prove the existence of an envy-free allocation for any discrete
cake and any number of players by resorting to Sperner’s Lemma, a suitable triangulation,
and moving-knife arguments. Our results also apply to pies, which are defined over
circumferences instead of intervals.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The problem of cake cutting is that of distributing pieces of a divisible good among two or more agents called players,
which usually value differently the same piece of cake. The goal is to find an allocation of pieces among the players that
satisfies some fairness or efficiency criteria. An overview of fair division and of the more specific subject of cake cutting
can be found in [4,6]. The two settings we deal with in this paper are the following. The first one is cutting and assigning
pieces of a cake which is represented by a segment over which each player’s valuation is defined. The second one is that of
a pie which is circular and the players receive wedges, i.e., pieces between radii, and therefore valuations are defined over
a circumference. Cake-cutting procedures where the number of cuts is kept as low as possible and the valuations have no
atoms are studied in [1]. Similar problems arising on pies are analysed in [2,3]. In this work we study the minimum-cuts
settingwhen the players’ valuations are concentrated on atoms and prove the existence of a distribution of pieces thatmakes
no player envious. Such result has already been developed for non-atomic valuations at [8,9,11].

The cutting of discrete cakes can be interpreted as follows. Suppose that t points of k different types (k ≤ t) are scattered
in a geographical area (e.g., locations of shops of k different classes in a city or deposits of k minerals in a region). The area
is to be divided into k regions which must be very simple in shape and the partition has to leave as many points as possible
of type i in the i-th region (1 ≤ i ≤ k) in order to specialize it in shops (or deposits) of type i. If we assume the cuts to be
parallel, then this problem reduces to that of cutting a cake for k players, where the valuations are concentrated on atoms.
Whereas with cuts that produce kwedges around a given point, the case is that of a discrete pie.

We model the cake by the interval [0, 1]. In the pie, the endpoints 0 and 1 are joined together. Subintervals (possibly
of zero length) represent cake pieces or pie wedges. There are k players among which the cake or pie is to be divided. The
valuation of Player i (1 ≤ i ≤ k) is given by a probability measure mi on the real line such that mi([0, 1]) = 1. In discrete
cakes or pies, mi has a finite number ni

≥ 1 of atoms as support, i.e., Player i gives a positive value to each of ni points in
[0, 1] and the sum of these ni values is 1. Points having a positive value for a player have value 0 for the other players, i.e.,
no two atoms (of different players) lie at the same position. Actually under coincidence of atoms of different players fair
distribution would often be impossible (e.g., this is the case for the cake with 5 consecutive atoms such that the first player
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values 1/3 the first, third, and fourth atom, and the second player values 1/3 the second, third, and fifth atom). Also notice
that it is the relative position of the atoms and not the exact position in [0, 1] all the information that matters in a discrete
cake or pie, in order to assess the existence of an allocation satisfying a certain fairness criterion. Due to this fact, we can
assume without loss of generality that these n =

k
i=1 n

i atoms lie at the midpoints of the intervals [(i − 1)/n, i/n] for
i = 1, . . . , n. This is a technical assumption that helps to simplify the proofs throughout this paper.

Cut positions (a cut-set) must be defined in order to perform a distribution of the cake or pie. In this paper we only
consider cut-sets with the minimum number of cuts. For k players, this means k − 1 cuts in a cake and k cuts in a pie. Cuts
are not allowed to lie on atoms. The cuts define k pieces and each is assigned to a player. The cuts and the assignment of
pieces define an allocation. In a cake we call the cuts c1, . . . , ck−1 from left to right, i.e., 0 ≤ c1 ≤ · · · ≤ ck−1

≤ 1. In a
pie there is also a k-th cut that will be placed exactly at 1 to achieve our envy-free division, as later seen. Given the already
defined positions for the n atoms we can assume that the cuts are only allowed to lie at the points i/n for i = 0, . . . , n.

The value of Player j’s piece in the view of Player i will be denoted by vij, i.e., if Player j receives the piece [ct , ct+1
] for

some t ∈ {0, . . . , k − 1} (we assume c0 = 0 and ck = 1), then vij
= mi([ct , ct+1

]). If i = j we simplify the notation by
using vi. Many optimality criteria can be defined over allocations of a given cake or pie. Simple fairness is satisfied if each
player receives at least one kth of the cake or pie according to its own valuation, i.e., vi

≥ 1/k for every player i. A stronger
requirement is envy-freeness which means that no player values another player’s piece more than its own, i.e., vi

≥ vij for
every pair (i, j) of players. That a player prefers some piece means that there is no strictly better piece in his/her valuation.

In this work, we prove the existence of an envy-free allocation for any number k of players and any discrete cake or pie.
To this end, in Section 2 we construct a triangulation and two suitable labellings of a representation of all possible cut-sets
within a simplex inRk−1. In Section 3we apply Sperner’s Lemma [7] in order to state the existence of a particular subsimplex
in the triangulation and, based on the properties of this subsimplex, we construct the desired envy-free allocation using a
fine-tuning movement of cuts. Finally, Section 4 closes the paper with some concluding remarks.

2. Triangulation and labelling of the cut-sets region

For k players, we represent a set of k − 1 cuts c1, . . . , ck−1 by the point (c1, . . . , ck−1) in the hypercube [0, 1]k−1. Let
d = k − 1 be the dimension of this hypercube. The constraints 0 ≤ c1 ≤ · · · ≤ ck−1

≤ 1 imply that the cut-sets lie in the
d-simplex ∆ with vertices at the origin and at the points given by ed + · · · + ed−i (i = 0, . . . , d − 1) where ei denotes the
i-th unit vector.

In what followswewish to apply Sperner’s Lemma on this simplex by using the idea of Simmons’ unpublished procedure
as quoted by Su [9] but we do not represent cut sets by pieces sizes but by the points in [0, 1] at which the cuts are placed
instead.

A triangulation of a polytope P is a finite collection of d-simplices (which we call elementary subsimplices or just
subsimplices in the following) whose union is P and such that if any two subsimplices intersect, they do so at an entire
face common to both simplices. In this work we consider triangulations of hypercubes and simplices only. A labelling of
a triangulated simplex is an assignment of a positive integer to the vertices of all the subsimplices in the triangulation. A
labelling is called complete if for each subsimplex we have that every vertex has a different label in the set {1, . . . , d + 1}.

The first step is to show the existence of a triangulation and a complete labelling of the cut-sets region ∆ for any
number of players. Since k = d + 1 equals the number of players, such a labelling can be interpreted as an assignment
of a player to each vertex of every subsimplex. We are going to construct a triangulation and complete labelling of ∆, such
that the set of vertices in the triangulation is exactly the set of possible cut-sets. The building block of this triangulation is
the Coxeter–Freudenthal–Kuhn triangulation of [0, 1]d into d-subsimplices [5], and we also consider a complete labelling
associated to this triangulation.

Lemma 1. There exists a triangulation with a complete labelling of [0, 1]d.

Proof. If P = i1, . . . , id is a permutation of 1, . . . , d, then define ZP to be the subsimplex whose vertices are the origin
and the points of the form ei1 + · · · + eih , for h = 1, . . . , d. The d! subsimplices corresponding to all the permutations of
1, . . . , d cover [0, 1]d and their intersections correspond to faces of themselves, hence they define a triangulation of [0, 1]d.
The labelling consists in assigning each vertex the number 1 plus the number of 1s present in the vertex coordinates, i.e.,
the vertex ei1 + · · · + eih receives label h + 1, for h = 0, . . . , d. �

We now show how this triangulation and labelling of [0, 1]d can be used as the building block for a triangulation of the
[0, n]d hypercube equipped with a complete labelling. The strategy used in Lemma 2 for extending the triangulation to the
whole space is known as the J1 triangulation in the literature [10]. In Lemma 2 we also show that the labelling introduced in
Lemma 1 remains consistent and complete under this construction.

Lemma 2. There exist a triangulation and complete labelling of the [0, n]d hypercube with vertex set [0, n]d ∩ Zd.

Proof. We will construct a triangulation and complete labelling of the hypercube [0, n]d where the vertex set is the set of
points with integer components in that hypercube. We achieve this by placing a reflection of the triangulated and labelled
hypercube [0, 1]d at [0, 1]d+(i1, . . . , id) for every vector (i1, . . . , ik)with integer components between0 andn−1 thus filling
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