Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the connectivity properties and energy of Fibonomial graphs

Mehmet Akbulak^{a,*}, Akın Kale^b, Ahmet Öteleş^c

^a Siirt University, Art and Science Faculty, Department of Mathematics, TR-56100, Siirt, Turkey ^b Siirt University, Siirt Vocational High School, TR-56100, Siirt, Turkey Siirt University, Sing School, TR-56100, Siirt, Turkey

^c Dicle University, Education Faculty, Department of Mathematics, TR-21280, Diyarbakır, Turkey

ARTICLE INFO

Article history: Received 3 February 2013 Received in revised form 9 December 2013 Accepted 16 December 2013 Available online 7 January 2014

Keywords: Fibonomial coefficients Graph Connectivity Eigenvalue Energy Laplacian eigenvalue Sum

Sum

1. Introduction

Christopher and Kennedy [5] introduced binomial graphs whose entries are dependent on the well-known binomial coefficients. For $0 \le n \in \mathbb{Z}$, the binomial graph with 2^n vertices is denoted by B_n . The vertex set V_n and the edge set E_n of the binomial graph B_n are defined by $V_n = \{v_j : j = 0, 1, ..., 2^n - 1\}$ and $E_n = \{(v_i, v_j) : \binom{i+j}{j} \equiv 1 \pmod{2}\}$. Christopher and Kennedy also investigated the spectrum and closed walks of B_n .

The well-known Fibonacci sequence $\{F_n\}_{n=0}^{\infty}$ is defined by the recurrence relation $F_{n+2} = F_{n+1} + F_n$ with initial conditions $F_0 = 0$ and $F_1 = 1$. From the Fibonacci recurrence relation, we can see that F_{3k} is always even and all other Fibonacci numbers are odd for $0 \le k \in \mathbb{Z}$. Fibonacci numbers have many applications in the field of graph theory (see [19,21,13,24]). Detailed information on the Fibonacci numbers and their properties can be found in [14].

Similar to the binomial coefficients, Fibonomial coefficients have been widely used (see [10,22,11,17,18]). Fibonomial coefficients are defined for $n \ge k \ge 1$ as

$$\begin{bmatrix} n \\ k \end{bmatrix}_{F} = \frac{F_{n}F_{n-1}\cdots F_{n-k+1}}{F_{1}F_{2}\cdots F_{k}}$$
(1)
with
$$\begin{bmatrix} n \\ 0 \end{bmatrix}_{F} = 1 \text{ and } \begin{bmatrix} n \\ k \end{bmatrix}_{F} = 0 \text{ for } n < k. \text{ As a consequence of the formula}$$

$$F_{m} = F_{k+1}F_{m-k} + F_{k}F_{m-k-1},$$

* Corresponding author. Tel.: +90 484 223 17 39/2530. E-mail addresses: makbulak@gmail.com (M. Akbulak), akinkale@gmail.com (A. Kale), aoteles85@gmail.com (A. Öteleş).

ABSTRACT

We introduce a new type of graph called a Fibonomial graph, denoted G_n . Entries of the adjacency matrix of G_n depend on the well-known Fibonomial coefficients modulo 2. We investigate the connectivity properties, eigenvalues, and energy of G_n . We lastly obtain the sum of the Laplacian eigenvalues of G_n .

© 2013 Elsevier B.V. All rights reserved.

⁰¹⁶⁶⁻²¹⁸X/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.dam.2013.12.007

which can be shown by an induction argument and the recursion formula

$$\begin{bmatrix} m \\ k \end{bmatrix}_F = F_{k+1} \begin{bmatrix} m-1 \\ k \end{bmatrix}_F + F_{m-k-1} \begin{bmatrix} m-1 \\ k-1 \end{bmatrix}_F.$$

Therefore, (1) will always take integer values [17].

Detailed information about the Fibonomial coefficients is presented in several recent papers [3,12,23,20,16,15]. For the sake of simplicity, we will denote the Fibonomial coefficients by

$$\begin{bmatrix} n \\ k \end{bmatrix}_F = F_{[n, k]}$$

Let $A = [a_{ij}]$ be a $m \times n$ matrix and $B = [b_{ij}]$ be a $s \times t$ matrix. The Kronecker product of A and B is denoted by $A \otimes B$. Let G_n be a graph with the vertex set $V_n = \{v_1, v_2, \dots, v_n\}$. The adjacency matrix $A_n = [a_{ij}]$ of the graph G_n is defined

(2)

(3)

as

$$a_{ij} = \begin{cases} 1 & \text{if } v_i \text{ is adjacent to } v_j, \\ 0 & \text{if } v_i \text{ is not adjacent to } v_j, \end{cases}$$

and the eigenvalues of A_n are also the eigenvalues of G_n .

The Laplacian matrix L_n of G_n is defined as $L_n = D_n - A_n$ where D_n is a degree matrix.

Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ denote the eigenvalues of A_n . In [8], Gutman defines the energy of G_n with n vertices as

$$\varepsilon(G_n) = \begin{cases} \sum_{i=1}^n |\lambda_i| & \text{if } G_n \text{ is a simple graph,} \\ \sum_{i=1}^n |\lambda_i - \frac{s}{n}| & \text{otherwise,} \end{cases}$$

where $S = tr(A_n) = \sum_{i=1}^n \lambda_i$.

For further references on the energy of a graph and Laplacian energy, see [7,9].

If $\mu_1, \mu_2, \ldots, \mu_n$ denote the eigenvalues of L_n , then the sum of the Laplacian eigenvalues of G_n is defined as

$$S(G_n) = \sum_{i=1}^n \mu_i.$$

Notations and concepts from graph theory that are not defined herein can be found in [4,6,1].

2. Fibonomial graphs

For $0 \le n \in \mathbb{Z}$, we define a Fibonomial graph $G_n = (V_n, E_n)$ with $3 \cdot 2^n$ vertices, G_n , with the vertex set $V_n = \{v_t : t = 0, 1, 2, ..., 3 \cdot 2^n - 1\}$ and the edge set $E_n = \{(v_i, v_j) : F_{[i+j,j]} \equiv 1 \pmod{2}\}$. The adjacency matrix of G_n is defined as $A_n = [a_{i,j}]_{i,j=0}^{3\cdot 2^n - 1}$, where

$$a_{i,j} \equiv F_{[i+j,j]} \pmod{2}.$$

Below, we give three Fibonomial graphs and their partitioned adjacency matrices in Figs. 1 and 2, respectively.

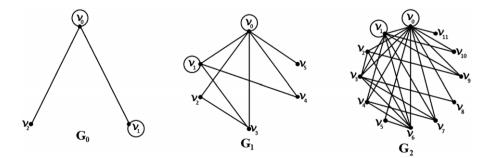


Fig. 1. Fibonomial graphs G_0 , G_1 and G_2 .

Download English Version:

https://daneshyari.com/en/article/419047

Download Persian Version:

https://daneshyari.com/article/419047

Daneshyari.com