Identifying codes of corona product graphs

Min Feng, Kaishun Wang*
Sch. Math. Sci. \& Lab. Math. Com. Sys., Beijing Normal University, Beijing, 100875, China

A R T I C LE IN F O

Article history:

Received 18 January 2013
Received in revised form 8 November 2013
Accepted 22 December 2013
Available online 11 January 2014

Keywords:

Identifying code
Domination number
Total domination number
Corona product

Abstract

For a vertex x of a graph G, let $N_{G}[x]$ be the set of x with all of its neighbors in G. A set C of vertices is an identifying code of G if the sets $N_{G}[x] \cap C$ are nonempty and distinct for all vertices x. If G admits an identifying code, we say that G is identifiable and denote by $\gamma^{I D}(G)$ the minimum cardinality of an identifying code of G. In this paper, we study the identifying code of the corona product $H \odot G$ of graphs H and G. We first give a necessary and sufficient condition for the corona product $H \odot G$ to be identifiable, and then express $\gamma^{I D}(H \odot G)$ in terms of $\gamma^{I D}(G)$ and the (total) domination number of H. Finally, we compute $\gamma^{I D}(H \odot G)$ for some special graphs G.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let G be an undirected, finite and simple graph. We often denote by $V(G)$ the vertex set of G. For $x \in V(G)$, the neighborhood $N_{G}(x)$ of x is the set of vertices adjacent to x; the closed neighborhood $N_{G}[x]$ of x is the union of $\{x\}$ and $N_{G}(x)$. For subsets C and S of $V(G)$, we say that C covers S if the set $N_{G}[x] \cap C$ is nonempty for each $x \in S$; we say that C separates S if the sets $N_{G}[x] \cap C$ are distinct for all $x \in S$. An identifying code of G is a set of vertices which covers and separates $V(G)$. If G admits an identifying code, we say that G is identifiable and denote by $\gamma^{I D}(G)$ the minimum cardinality of an identifying code of G. Note that G is identifiable if and only if the sets $N_{G}[x]$ are distinct for all $x \in V(G)$.

The concept of identifying codes was introduced by Karpovsky et al. [23] to model a fault-detection problem in multiprocessor systems. It was noted in $[6,9]$ that determining the identifying code with the minimum cardinality in a graph (even in the planar graph [1]) is an NP-hard problem. Many researchers focused on studying identifying codes of some restricted graphs, for example, cycles [3,7,15,22,35], grids [2,5,8,11,18,19,27,29,32-34] and triangle-free graphs [14]. The identifying codes of graph products were studied; see [16,21,31] for Cartesian products, [13] for lexicographic products and [30] for direct products. More references on identifying codes can be found on A. Lobstein's web page [26].

The corona product $H \odot G$ of two graphs H and G is defined as the graph obtained from H and G by taking one copy of H and $|V(H)|$ copies of G and joining by an edge each vertex from the i th-copy of G with the ith-vertex of H. For each $v \in V(H)$, we often refer to G_{v} the copy of G connected to v in $H \odot G$. Observe that $H \odot G$ is connected if and only if H is connected. Therefore, we always assume that H is a connected graph in this paper.

This paper is aimed to investigate identifying codes of the corona product $H \odot G$ of graphs H and G. In Section 2, we first give a necessary and sufficient condition for the corona product $H \odot G$ to be identifiable, and then construct some identifying codes of $H \odot G$. In Section 3, some inequalities for $\gamma^{I D}(H \odot G)$ are established. In Section 4, we express $\gamma^{I D}(H \odot G)$ in terms of $\gamma^{I D}(G)$ and the (total) domination number of H. In Section 5, we compute $\gamma^{I D}(H \odot G)$ for some special graphs G.

[^0]
2. Constructions

In this section, we first give a necessary and sufficient condition for the corona product $H \odot G$ to be identifiable, and then construct some identifying codes of $H \odot G$.

Denote by K_{n} the complete graph on n vertices.
Theorem 2.1. Let G be a graph.
(i) Then $K_{1} \odot G$ is identifiable if and only if G is an identifiable graph with maximum degree at most $|V(G)|-2$.
(ii) If H is a connected graph with at least two vertices, then $H \odot G$ is identifiable if and only if G is identifiable.

Proof. (i) Write $V\left(K_{1}\right)=\{v\}$. Note that $N_{K_{1} \odot G}[v]=V\left(K_{1} \odot G\right)$. For any vertices x and y of G_{v}, we have $N_{K_{1} \odot G}[x]=N_{K_{1} \odot G}[y]$ if and only if $N_{G_{v}}[x]=N_{G_{v}}[y]$. Hence, the desired result follows.
(ii) If $H \odot G$ is identifiable, then G_{v} is identifiable for each $v \in V(H)$, which implies that G is identifiable. Conversely, suppose that G is identifiable. Pick any two distinct vertices x and y of $H \odot G$. If $\{x, y\} \nsubseteq V\left(G_{v}\right)$ for any $v \in V(H)$, then $N_{H \odot G}[x] \neq N_{H \odot G}[y]$. If there exists a vertex $v \in V(H)$ such that $\{x, y\} \subseteq V\left(G_{v}\right)$, by $N_{G_{v}}[x] \neq N_{G_{v}}[y]$ we have $N_{H \odot G}[x] \neq N_{H \odot G}[y]$. So $H \odot G$ is identifiable.

In the remainder of this section, some identifying codes of the identifiable corona product $H \odot G$ are constructed. We begin by a useful lemma.

Lemma 2.2. A set C of vertices in the corona product $H \odot G$ is an identifying code if, for each $v \in V(H)$, the following three conditions hold.
(i) $C \cap V\left(G_{v}\right)$ is nonempty and separates $V\left(G_{v}\right)$ in G_{v}.
(ii) $N_{H}(v) \cap C \neq \emptyset$, or $C \cap V\left(G_{v}\right) \nsubseteq N_{G_{v}}[x]$ for any $x \in V\left(G_{v}\right)$.
(iii) $v \in C$, or $C \cap V\left(G_{v}\right)$ covers $V\left(G_{v}\right)$ in G_{v}.

Proof. Since $C \cap V\left(G_{v}\right) \neq \emptyset$, the set $C \cap V\left(G_{v}\right)$ covers $\{v\}$. Since $\{v\}$ covers $V\left(G_{v}\right)$, by (iii) the set $C \cap\left(V\left(G_{v}\right) \cup\{v\}\right)$ covers $V\left(G_{v}\right)$. It follows that C covers $V(H \odot G)$. Hence, we only need to show that, for any two distinct vertices x and y in $V(H \odot G)$,

$$
\begin{equation*}
N_{H \odot G}[x] \cap C \neq N_{H \odot G}[y] \cap C . \tag{1}
\end{equation*}
$$

Case 1. $\{x, y\} \cap V(H) \neq \emptyset$. Without loss of generality, assume that $x \in V(H)$. If $y \in V(H \odot G) \backslash V\left(G_{x}\right)$, pick $z \in C \cap V\left(G_{x}\right)$, then $z \in\left(N_{H \odot G}[x] \cap C\right) \backslash N_{H \odot G}[y]$, which implies that (1) holds. Now suppose that $y \in V\left(G_{x}\right)$. If $C \cap V\left(G_{x}\right) \nsubseteq N_{G_{x}}[y]$, then $N_{H \odot G}[x] \cap C \nsubseteq N_{H \odot G}[y]$, and so (1) holds. If $C \cap V\left(G_{x}\right) \subseteq N_{G_{x}}[y]$, by (ii) we can pick $z^{\prime} \in N_{H}(x) \cap C$. Then $z^{\prime} \in\left(N_{H \odot G}[x] \cap C\right) \backslash N_{H \odot G}[y]$, and so (1) holds.

Case 2. $\{x, y\} \cap V(H)=\emptyset$. Then there exist vertices u and v of H such that $x \in V\left(G_{u}\right)$ and $y \in V\left(G_{v}\right)$. If $u=v$, since $C \cap V\left(G_{u}\right)$ separates $\{x, y\}$ in G_{u}, the set C separates $\{x, y\}$ in $H \odot G$, which implies that (1) holds. If $u \neq v$, then $N_{H \odot G}[x] \cap N_{H \odot G}[y]=\emptyset$. Since C covers $\{x, y\}$, the inequality (1) holds.

Next we shall construct identifying codes of $H \odot G$.
Corollary 2.3. Let H be a graph and let G be an identifiable graph with maximum degree at most $|V(G)|-2$. For each $v \in V(H)$, suppose that S_{v} is an identifying code of G_{v} such that $S_{v} \nsubseteq N_{G_{v}}[x]$ for any vertex x of G_{v}. Then

$$
\bigcup_{v \in V(H)} S_{v}
$$

is an identifying code of $H \odot G$.
Proof. It is immediate from Lemma 2.2.
Proposition 2.4. Let S be a set of vertices in an identifiable graph G. If S separates $V(G)$, then there exists a vertex $z \in V(G)$ such that $S \cup\{z\}$ is an identifying code of G, and so $|S| \geq \gamma^{I D}(G)-1$.
Proof. If S covers $V(G)$, then $S \cup\{z\}$ is an identifying code of G for any $z \in V(G)$. Now suppose that S does not cover $V(G)$. Then there exists a unique vertex $z \in V(G)$ such that $N_{G}[z] \cap S=\emptyset$, which implies that $S \cup\{z\}$ is an identifying code of G, as desired.

From the above proposition, a set of vertices that separates the vertex set is an identifying code, or is obtained from an identifying code by deleting a vertex. Now we use this set of vertices in G and the vertex set of H to construct identifying codes of $H \odot G$.

Corollary 2.5. Let G and H be two graphs with at least two vertices. Suppose that G is identifiable. For each $v \in V(H)$, suppose that S_{v} is a set of vertices separating $V\left(G_{v}\right)$ in G_{v}. Then

$$
\bigcup_{v \in V(H)} S_{v} \cup V(H)
$$

is an identifying code of $H \odot G$.

https://daneshyari.com/en/article/419054

Download Persian Version:

https://daneshyari.com/article/419054

Daneshyari.com

[^0]: * Corresponding author. Tel.: +86 13436560122.

 E-mail address: wangks@bnu.edu.cn (K. Wang).

