Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Identifying codes of corona product graphs

Min Feng, Kaishun Wang*

Sch. Math. Sci. & Lab. Math. Com. Sys., Beijing Normal University, Beijing, 100875, China

ARTICLE INFO

Article history: Received 18 January 2013 Received in revised form 8 November 2013 Accepted 22 December 2013 Available online 11 January 2014

Keywords: Identifying code Domination number Total domination number Corona product

ABSTRACT

For a vertex *x* of a graph *G*, let $N_G[x]$ be the set of *x* with all of its neighbors in *G*. A set *C* of vertices is an *identifying code* of *G* if the sets $N_G[x] \cap C$ are nonempty and distinct for all vertices *x*. If *G* admits an identifying code, we say that *G* is identifiable and denote by $\gamma^{ID}(G)$ the minimum cardinality of an identifying code of *G*. In this paper, we study the identifying code of the corona product $H \odot G$ of graphs *H* and *G*. We first give a necessary and sufficient condition for the corona product $H \odot G$ to be identifiable, and then express $\gamma^{ID}(H \odot G)$ in terms of $\gamma^{ID}(G)$ and the (total) domination number of *H*. Finally, we compute $\gamma^{ID}(H \odot G)$ for some special graphs *G*.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let *G* be an undirected, finite and simple graph. We often denote by V(G) the vertex set of *G*. For $x \in V(G)$, the *neighborhood* $N_G(x)$ of *x* is the set of vertices adjacent to *x*; the *closed neighborhood* $N_G[x]$ of *x* is the union of $\{x\}$ and $N_G(x)$. For subsets *C* and *S* of V(G), we say that *C* covers *S* if the set $N_G[x] \cap C$ is nonempty for each $x \in S$; we say that *C* separates *S* if the sets $N_G[x] \cap C$ are distinct for all $x \in S$. An *identifying code* of *G* is a set of vertices which covers and separates V(G). If *G* admits an identifying code, we say that *G* is *identifiable* and denote by $\gamma^{ID}(G)$ the minimum cardinality of an identifying code of *G*. Note that *G* is identifiable if and only if the sets $N_G[x]$ are distinct for all $x \in V(G)$.

The concept of identifying codes was introduced by Karpovsky et al. [23] to model a fault-detection problem in multiprocessor systems. It was noted in [6,9] that determining the identifying code with the minimum cardinality in a graph (even in the planar graph [1]) is an NP-hard problem. Many researchers focused on studying identifying codes of some restricted graphs, for example, cycles [3,7,15,22,35], grids [2,5,8,11,18,19,27,29,32–34] and triangle-free graphs [14]. The identifying codes of graph products were studied; see [16,21,31] for Cartesian products, [13] for lexicographic products and [30] for direct products. More references on identifying codes can be found on A. Lobstein's web page [26].

The corona product $H \odot G$ of two graphs H and G is defined as the graph obtained from H and G by taking one copy of H and |V(H)| copies of G and joining by an edge each vertex from the *i*th-copy of G with the *i*th-vertex of H. For each $v \in V(H)$, we often refer to G_v the copy of G connected to v in $H \odot G$. Observe that $H \odot G$ is connected if and only if H is connected. Therefore, we always assume that H is a connected graph in this paper.

This paper is aimed to investigate identifying codes of the corona product $H \odot G$ of graphs H and G. In Section 2, we first give a necessary and sufficient condition for the corona product $H \odot G$ to be identifiable, and then construct some identifying codes of $H \odot G$. In Section 3, some inequalities for $\gamma^{ID}(H \odot G)$ are established. In Section 4, we express $\gamma^{ID}(H \odot G)$ in terms of $\gamma^{ID}(G)$ and the (total) domination number of H. In Section 5, we compute $\gamma^{ID}(H \odot G)$ for some special graphs G.

* Corresponding author. Tel.: +86 13436560122. E-mail address: wangks@bnu.edu.cn (K. Wang).

⁰¹⁶⁶⁻²¹⁸X/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.dam.2013.12.017

2. Constructions

In this section, we first give a necessary and sufficient condition for the corona product $H \odot G$ to be identifiable, and then construct some identifying codes of $H \odot G$.

Denote by K_n the complete graph on n vertices.

Theorem 2.1. Let G be a graph.

(i) Then $K_1 \odot G$ is identifiable if and only if G is an identifiable graph with maximum degree at most |V(G)| - 2. (ii) If H is a connected graph with at least two vertices, then $H \odot G$ is identifiable if and only if G is identifiable.

Proof. (i) Write $V(K_1) = \{v\}$. Note that $N_{K_1 \odot G}[v] = V(K_1 \odot G)$. For any vertices x and y of G_v , we have $N_{K_1 \odot G}[x] = N_{K_1 \odot G}[y]$ if and only if $N_{G_v}[x] = N_{G_v}[y]$. Hence, the desired result follows.

(ii) If $H \odot G$ is identifiable, then G_v is identifiable for each $v \in V(H)$, which implies that G is identifiable. Conversely, suppose that G is identifiable. Pick any two distinct vertices x and y of $H \odot G$. If $\{x, y\} \not\subseteq V(G_v)$ for any $v \in V(H)$, then $N_{H \odot G}[x] \neq N_{H \odot G}[y]$. If there exists a vertex $v \in V(H)$ such that $\{x, y\} \subseteq V(G_v)$, by $N_{G_v}[x] \neq N_{G_v}[y]$ we have $N_{H \odot G}[x] \neq N_{H \odot G}[y]$. So $H \odot G$ is identifiable. \Box

In the remainder of this section, some identifying codes of the identifiable corona product $H \odot G$ are constructed. We begin by a useful lemma.

Lemma 2.2. A set *C* of vertices in the corona product $H \odot G$ is an identifying code if, for each $v \in V(H)$, the following three conditions hold.

- (i) $C \cap V(G_v)$ is nonempty and separates $V(G_v)$ in G_v .
- (ii) $N_H(v) \cap C \neq \emptyset$, or $C \cap V(G_v) \not\subseteq N_{G_v}[x]$ for any $x \in V(G_v)$.
- (iii) $v \in C$, or $C \cap V(G_v)$ covers $V(G_v)$ in G_v .

Proof. Since $C \cap V(G_v) \neq \emptyset$, the set $C \cap V(G_v)$ covers $\{v\}$. Since $\{v\}$ covers $V(G_v)$, by (iii) the set $C \cap (V(G_v) \cup \{v\})$ covers $V(G_v)$. It follows that C covers $V(H \odot G)$. Hence, we only need to show that, for any two distinct vertices x and y in $V(H \odot G)$,

$$N_{H \odot G}[x] \cap C \neq N_{H \odot G}[y] \cap C.$$

(1)

Case 1. {x, y} \cap $V(H) \neq \emptyset$. Without loss of generality, assume that $x \in V(H)$. If $y \in V(H \odot G) \setminus V(G_x)$, pick $z \in C \cap V(G_x)$, then $z \in (N_{H \odot G}[x] \cap C) \setminus N_{H \odot G}[y]$, which implies that (1) holds. Now suppose that $y \in V(G_x)$. If $C \cap V(G_x) \not\subseteq N_{G_x}[y]$, then $N_{H \odot G}[x] \cap C \not\subseteq N_{H \odot G}[y]$, and so (1) holds. If $C \cap V(G_x) \subseteq N_{G_x}[y]$, by (ii) we can pick $z' \in N_H(x) \cap C$. Then $z' \in (N_{H \odot G}[x] \cap C) \setminus N_{H \odot G}[y]$, and so (1) holds.

Case 2. $\{x, y\} \cap V(H) = \emptyset$. Then there exist vertices u and v of H such that $x \in V(G_u)$ and $y \in V(G_v)$. If u = v, since $C \cap V(G_u)$ separates $\{x, y\}$ in G_u , the set C separates $\{x, y\}$ in $H \odot G$, which implies that (1) holds. If $u \neq v$, then $N_{H \odot G}[x] \cap N_{H \odot G}[y] = \emptyset$. Since C covers $\{x, y\}$, the inequality (1) holds. \Box

Next we shall construct identifying codes of $H \odot G$.

Corollary 2.3. Let *H* be a graph and let *G* be an identifiable graph with maximum degree at most |V(G)| - 2. For each $v \in V(H)$, suppose that S_v is an identifying code of G_v such that $S_v \not\subseteq N_{G_v}[x]$ for any vertex *x* of G_v . Then

 $\bigcup_{v \in V(H)} S_v$

is an identifying code of $H \odot G$.

Proof. It is immediate from Lemma 2.2.

Proposition 2.4. Let *S* be a set of vertices in an identifiable graph *G*. If *S* separates V(G), then there exists a vertex $z \in V(G)$ such that $S \cup \{z\}$ is an identifying code of *G*, and so $|S| \ge \gamma^{ID}(G) - 1$.

Proof. If *S* covers *V*(*G*), then $S \cup \{z\}$ is an identifying code of *G* for any $z \in V(G)$. Now suppose that *S* does not cover *V*(*G*). Then there exists a unique vertex $z \in V(G)$ such that $N_G[z] \cap S = \emptyset$, which implies that $S \cup \{z\}$ is an identifying code of *G*, as desired. \Box

From the above proposition, a set of vertices that separates the vertex set is an identifying code, or is obtained from an identifying code by deleting a vertex. Now we use this set of vertices in *G* and the vertex set of *H* to construct identifying codes of $H \odot G$.

Corollary 2.5. Let G and H be two graphs with at least two vertices. Suppose that G is identifiable. For each $v \in V(H)$, suppose that S_v is a set of vertices separating $V(G_v)$ in G_v . Then

$$\bigcup_{v\in V(H)}S_v\cup V(H)$$

is an identifying code of $H \odot G$.

Download English Version:

https://daneshyari.com/en/article/419054

Download Persian Version:

https://daneshyari.com/article/419054

Daneshyari.com