Fault-free Hamilton cycles in burnt pancake graphs with conditional edge faults

Xiaolan Hu^{a}, Huiqing Liu ${ }^{\mathrm{b}}$, Xiang-Feng Pan ${ }^{\mathrm{c}, *}$
${ }^{\text {a }}$ Department of Mathematics, Nanjing University, Nanjing 210093, China
${ }^{\text {b }}$ Faculty of Mathematics and Computer Science, Hubei University, Wuhan 430062, China
${ }^{\text {c }}$ School of Mathematical Sciences, Anhui University, Hefei 230601, China

ARTICLE INFO

Article history:

Received 29 January 2013
Received in revised form 2 September 2013
Accepted 30 December 2013
Available online 23 January 2014

Keywords:

Interconnection network
Burnt pancake graph
Hamilton cycle
Edge-fault-tolerance
Conditional faulty network

Abstract

In this paper, we consider the edge fault tolerance of n-dimensional burnt pancake graph $B P_{n}$ such that each vertex is incident with at least two fault free edges. Based on this requirement, we show that $B P_{n}$ contains a fault free Hamilton cycle even it has up to $2 n-5$ link faults, where $n \geq 3$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The performance of an interconnection network highly relies on its interconnection topology. In recent decades, a lot of network topologies are based on the Cayley graphs and have been the focus of many intensive research efforts [1,2,8,9]. A burnt pancake graph $[10,11]$ is such a new topology. Recently, many interesting properties of the burnt pancake graphs are studied (see [5,6,15-19]). Since faults may occur to networks, it is significant to consider faulty networks. In the event of a random edge failure, it is very unlikely that all of the edges incident with a single vertex fail simultaneously. This reason has motivated the research on the Hamiltonian connectivity of conditional faulty networks in which each vertex is incident with at least two fault free edges. Based on this requirement, the k-ary n-cube (star graph, alternating group graph, locally twisted cube, crossed cube and pancake graph, resp.) with up to $4 n-5(2 n-7,4 n-13,2 n-5,2 n-5$ and $2 n-7$, resp.) edge faults contains a fault free Hamilton cycle [3] ($[7,20,12,14,21]$, resp.), where $n \geq 3$ is the dimension of the mentioned network. In this paper, we show that the conditional faulty n-dimensional burnt pancake graph contains a fault free Hamilton cycle even it has up to $2 n-5$ edge faults, where $n \geq 3$.

2. Preliminaries

Network topology is always represented by a graph where vertices represent processors and edges represent links between processors. All graphs considered here are finite and simple. Undefined terminology and notation may refer to [4]. Let $G=(V, E)$ be an undirected graph and $v \in V(G) . N_{G}(v)$ denotes the neighbor of v in G and $d_{G}(v)=\left|N_{G}(v)\right|$. Let $\delta(G)=$

[^0]

Fig. 1. $B P_{1}, B P_{2}$ and $B P_{3}$.
$\min \left\{d_{G}(v): v \in V(G)\right\}$. For a subgraph H of G, let $N_{H}(v)=N_{G}(v) \cap V(H)$ and $d_{H}(v)=\left|N_{H}(v)\right|$. For $S, T \subseteq V(G), E_{G}(S, T)=$ $\{u v \in E(G): u \in S, v \in T\}, E_{G}(S)=E_{G}(S, V \backslash S)$ and $E_{G}(u)=E_{G}(\{u\})$. A path from u to v is called a (u, v)-path. The distance between two vertices u and v, denoted by $d_{G}(u, v)$, is the length of the shortest (u, v)-path. A path or cycle is Hamiltonian if it contains all vertices of the graph.

Let C be a cycle in G with a given orientation. For $v \in V(C)$, we use v^{+}, v^{-}to denote the successor and predecessor of v on C, respectively. If $u, v \in V(C)$, we denote by $u C v$ the subpath $u u^{+} \cdots v^{-} v$ of C. The same subpath, in reverse order, is denoted by $v \bar{C} u$. We also use analogous notations for a path P in G.

Let p be an integer, and write the integer $-p$ as \bar{p}, to save place. Let $\langle n\rangle=\{1,2, \ldots, n\}$ and $[n]=\{1,2, \ldots, n, \overline{1}$, $\overline{2}, \ldots, \bar{n}\}$. A signed permutation of $\langle n\rangle$ is an n-permutation $u_{1} u_{2} \cdots u_{n}$ of $[n]$ such that the set of absolute value of each element $\left\{\left|u_{1}\right|,\left|u_{2}\right|, \ldots,\left|u_{n}\right|\right\}=\langle n\rangle$. For a signed permutation $u=u_{1} u_{2} \cdots u_{n}$ of $\langle n\rangle$, the i-th prefix reversal of u, denoted by $u^{(i)}$, is $\overline{u_{i} u_{i-1}} \cdots \overline{u_{1}} u_{i+1} \cdots u_{n}$. For example, let $u=1 \overline{2} 4 \overline{3} 5$, then u is a signed permutation of $\langle 5\rangle, u^{(2)}=2 \overline{1} 4 \overline{3} 5$ and $u^{(5)}=\overline{5} 3 \overline{4} 2 \overline{1}$.

The n-dimensional burnt pancake graph $B P_{n}$ is an n-regular graph with $n!2^{n}$ vertices, each of which has a unique label from the signed permutation of $\langle n\rangle$. Two vertices u and v are adjacent in $B P_{n}$ if and only if $u^{(i)}=v$ for some unique $i(1 \leq i \leq n)$. Such an edge $u v$ is called an i-dimensional edge and v is called the i-neighbor of u. It is seen that every vertex has a unique i-neighbor for $1 \leq i \leq n$. For convenience, we use $\langle u\rangle_{i}$ to denote the i th leftmost digit, i.e., $\langle u\rangle_{i}=u_{i}$ if $u=u_{1} u_{2} \cdots u_{n}$, where $1 \leq i \leq n$. For $r \in[n]$, the subgraph of $B P_{n}$ induced by the set of vertices u with $\langle u\rangle_{n}=r$ forms a $B P_{n-1}$, denoted by $B P_{n}^{(r)}$. Thus, $B P_{n}$ contains $2 n B P_{n-1}$'s, i.e., $B P_{n}^{(1)}, B P_{n}^{(2)}, \ldots, B P_{n}^{(n)}, B P_{n}^{(\overline{1})}, B P_{n}^{(\overline{2})}, \ldots, B P_{n}^{(\bar{n})}$. Fig. 1 illustrates $B P_{3}^{(1)}, B P_{3}^{(2)}, B P_{3}^{(3)}, B P_{3}^{(\overline{1})}, B P_{3}^{(\overline{2})}, B P_{3}^{(\overline{3})}$ that are embedded in $B P_{3}$.

In the following, we always assume $n \geq 3$ and divide $B P_{n}$ into $B P_{n}^{(r)}, r \in[n]$ along dimension n. For any $p, q \in[n], I \subseteq$ $[n], F \subset E\left(B P_{n}\right)$, we write:

- $E^{(p)}$ for the set of all p-dimensional edges in $B P_{n}$;
- $F^{(p)}$ for the edge set $F \cap E\left(B P_{n}^{(p)}\right)$;
- $F(n)$ for the edge set $E^{(n)} \cap F$;
- F^{I} for the edge set $\bigcup_{i \in I} F^{(i)}$;
- $E_{p, q}$ for the edge set $E_{B P_{n}}\left(V\left(B P_{n}^{(p)}\right), V\left(B P_{n}^{(q)}\right)\right)$;
- $E_{p, q}^{(r)}$ for the edge set $\left\{u v \in E\left(B P_{n}^{(r)}\right): u^{(n)} \in V\left(B P_{n}^{(p)}\right), v^{(n)} \in V\left(B P_{n}^{(q)}\right)\right\}$, where $r \neq p, q$;
- $E_{p, q}$ for the edge set $E_{B P_{n}-F}\left(V\left(B P_{n}^{(p)}\right), V\left(B P_{n}^{(q)}\right)\right)$;
- $B P_{n}^{I}$ for the subgraph of $B P_{n}$ induced by $\bigcup_{i \in I} V\left(B P_{n}^{(i)}\right)$;
- $E_{p}^{Q(q)}$ for the edge set $\left\{u v \in E(Q(q)): u^{(n)} \in V\left(B P_{n}^{(p)}\right)\right\}$, where $Q(q)$ is a Hamilton (x, y)-path of $B P_{n}^{(q)}$ with $x^{(n)}, y^{(n)} \notin$ $V\left(B P_{n}^{(p)}\right)$ or $Q(q)$ is a Hamilton cycle of $B P_{n}^{(q)}$. Note that $E_{p}^{Q(\bar{p})}=\emptyset$.

Lemma 2.1 ([13]). Let $u \in V\left(B P_{n}^{(p)}\right)$ and $v \in V\left(B P_{n}^{(q)}\right)$ with $u \neq v$ and $p, q \in[n]$.
(i) If $p=q$ and $d_{B P_{n}}(u, v) \leq 2$, then $\left\langle u^{(n)}\right\rangle_{n} \neq\left\langle v^{(n)}\right\rangle_{n}$;
(ii) If $p \neq q$ and $d_{B P_{n}}(u, v) \leq 3$, then $\left\langle u^{(n)}\right\rangle_{n} \neq\left\langle v^{(n)}\right\rangle_{n}$.

https://daneshyari.com/en/article/419059

Download Persian Version:

https://daneshyari.com/article/419059

Daneshyari.com

[^0]: * Corresponding author. Tel.: +86 13855125189.

 E-mail addresses: xlh_2009@163.com (X. Hu), hql_2008@163.com (H. Liu), xfpan@ustc.edu (X.-F. Pan).

