On the sum of all distances in bipartite graphs*

Shuchao Li ${ }^{*}$, Yibing Song
Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, PR China

ARTICLE INFO

Article history:

Received 15 June 2013
Received in revised form 21 November 2013
Accepted 16 December 2013
Available online 7 January 2014

Keywords:

Bipartite graph
Transmission
Matching number
Diameter
Vertex connectivity
Edge connectivity

Abstract

The transmission of a connected graph G is the sum of all distances between all pairs of vertices in G, it is also called the Wiener index of G. In this paper, sharp bounds on the transmission are determined for several classes of connected bipartite graphs. For example, in the class of all connected n-vertex bipartite graphs with a given matching number q, the minimum transmission is realized only by the graph $K_{q, n-q}$; in the class of all connected n vertex bipartite graphs of diameter d, the extremal graphs with the minimal transmission are characterized. Moreover, all the extremal graphs having the minimal transmission in the class of all connected n-vertex bipartite graphs with a given vertex connectivity (resp. edge-connectivity) are also identified.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we only consider connected, simple and undirected graphs. Let $G=\left(V_{G}, E_{G}\right)$ be a graph with $u, v \in V_{G}$. Then $G-v, G-u v$ denote the graph obtained from G by deleting vertex $v \in V_{G}$, or edge $u v \in E_{G}$, respectively (this notation is naturally extended if more than one vertex or edge is deleted). Similarly, $G+u v$ is obtained from G by adding an edge $u v \notin E_{G}$. For $v \in V_{G}$, let $N_{G}(v)$ (or $N(v)$ for short) denote the set of all the adjacent vertices of v in G and $d(v)=\left|N_{G}(v)\right|$, the degree of v in G. In particular, let $\Delta(G)=\max \left\{d(x) \mid x \in V_{G}\right\}$ and $\delta(G)=\min \left\{d(x) \mid x \in V_{G}\right\}$. For convenience, let $N_{G}[u]=N_{G}(u) \cup\{u\}$. The distance $d(u, v)$ between vertices u and v in G is defined as the length of a shortest path between them. The diameter of G is the maximal distance between any two vertices of G. $D_{G}(u)$ denotes the sum of all distances from u in G.

Recall that G is called k-connected if $|G|>k$ and $G-X$ is connected for every set $X \subseteq V_{G}$ with $|X|<k$. The greatest integer k such that G is k-connected is the connectivity $\kappa(G)$ of G. Thus, $\kappa(G)=0$ if and only if G is disconnected or K_{1}, and $\kappa\left(K_{n}\right)=n-1$ for all $n \geq 1$.

Analogously, if $|G|>1$ and $G-E^{\prime}$ is connected for every set $E^{\prime} \subseteq E_{G}$ of fewer than l edges, then G is called l-edgeconnected. The greatest integer l such that G is l-connected is the edge-connectivity $\kappa^{\prime}(G)$ of G. In particular, $\kappa^{\prime}(G)=0$ if G is disconnected.

A bipartite graph G is a simple graph, whose vertex set V_{G} can be partitioned into two disjoint subsets V_{1} and V_{2} such that every edge of G joins a vertex of V_{1} with a vertex of V_{2}. A bipartite graph in which every two vertices from different partition classes are adjacent is called complete, which is denoted by $K_{m, n}$, where $m=\left|V_{1}\right|, n=\left|V_{2}\right|$.

[^0]A vertex (edge) independent set of a graph G is a set of vertices (edges) such that any two distinct vertices (edges) of the set are not adjacent (incident on a common vertex). The vertex (edge) independence number of G, denoted by $\alpha(G)\left(\alpha^{\prime}(G)\right.$), is the maximum of the cardinalities of all vertex (edge) independent sets. A vertex (edge) cover of a graph G is a set of vertices (edges) such that each edge (vertex) of G is incident with at least one vertex (edge) of the set. The vertex (edge) cover number of G, denoted by $\beta(G)\left(\beta^{\prime}(G)\right)$, is the minimum of the cardinalities of all vertex (edge) covers. For a connected graph G of order n, its matching number $\alpha^{\prime}(G)$ satisfies $1 \leq \alpha^{\prime}(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$. When we consider an edge cover of a graph, we always assume that the graph contains no isolated vertex. It is known that for a graph G of order $n, \alpha(G)+\beta(G)=n$; and if in addition G has no isolated vertex, then $\alpha^{\prime}(G)+\beta^{\prime}(G)=n$. For a bipartite graph G, one has $\alpha^{\prime}(G)=\beta(G)$, and $\alpha(G)=\beta^{\prime}(G)$.

Let \mathscr{A}_{n}^{k} be the class of all bipartite graphs of order n with matching number k; \mathscr{B}_{n}^{d} be the class of all bipartite graphs of order n with diameter d; \mathscr{C}_{n}^{s} (resp. \mathscr{D}_{n}^{t}) be the class of all n-vertex bipartite graphs with connectivity s (resp. edgeconnectivity t).

The transmission of G is the sum of distances between all pairs of vertices of G, which is denoted by

$$
W(G)=\sum_{u, v \in V_{G}} d_{G}(u, v)=\frac{1}{2} \sum_{v \in V_{G}} D_{G}(v)
$$

This quantity was introduced by Wiener in [11] and has been extensively studied in the monograph [1] and was named 'gross status' [13], 'total status' [1], 'graph distance' [8] and 'transmission' [19,20]. In the chemical literature $W(G)$ is nowadays known exclusively under the name 'Wiener index'. For a mathematical work mentioning the Wiener index see [17]. It is related to several properties of chemical molecules; see [12]. For this reason Wiener index is widely studied by chemists, although it has interesting applications also in computer networks (see [7]). Recently, several special issues of journals were devoted to (mathematical properties of) Wiener index [10,9,5]. For surveys and some up-to-date papers related to Wiener index of trees and line graphs, see $[4,17,15,16,18,22]$ and $[2,3,6,14,21]$, respectively.

In this paper we study the quantity W in the case of n-vertex bipartite graphs, which is an important class of graphs in graph theory. Based on the structure of bipartite graphs, sharp bounds on W among \mathscr{A}_{n}^{q} (resp. $\mathscr{B}_{n}^{d}, \mathscr{C}_{n}^{s}, \mathscr{D}_{n}^{t}$) are determined. The corresponding extremal graphs are identified, respectively.

Further on we need the following lemma, which is the direct consequence of the definition of W.
Lemma 1.1. Let G be a connected graph of order n and not isomorphic to K_{n}. Then for each edge $e \in \bar{G}, W(G)>W(G+e)$.

2. The graph with minimum transmission among \mathscr{A}_{n}^{q}

In this section, we determine the sharp lower bound on the transmission of all n-vertex bipartite graphs with matching number q. The unique corresponding extremal graph is identified.

Theorem 2.1. Let G be in \mathscr{A}_{n}^{q}. Then $W(G) \geqslant n^{2}+q^{2}-q n-n$ with equality if and only if $G \cong K_{q, n-q}$.
Proof. It is routine to check that

$$
W\left(K_{q, n-q}\right)=n^{2}+q^{2}-q n-n .
$$

So in what follows, we show that $K_{q, n-q}$ is the unique graph in \mathscr{A}_{n}^{q} with the minimum transmission.
Choose G in \mathscr{A}_{n}^{q} such that its transmission is as small as possible. If $q=\left\lfloor\frac{n}{2}\right\rfloor$, by Lemma 1.1 the extremal graph is just $K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$, as desired. So in what follows, we consider $q<\left\lfloor\frac{n}{2}\right\rfloor$.

Let (U, W) be the bipartition of the vertex set of G such that $|W| \geq|U| \geq q$, and let M be a maximal matching of G. By Lemma 1.1, the sum of all distances of a graph decreases with addition of edges, so if $|U|=q$, then the extremal graph is $G=K_{q, n-q}$. So we assume that $|U|>q$ in what follows.

Let U_{M}, W_{M} be the sets of vertices of U, W which are incident to the edges of M, respectively. Therefore, $\left|U_{M}\right|=\left|W_{M}\right|=q$. Note that G contains no edges between the vertices of $U \backslash U_{M}$ and the vertices of $W \backslash W_{M}$, otherwise any such edge may be united with M to produce a matching of cardinality greater than that of M, violating the maximality of M.

Adding all possible edges between the vertices of U_{M} and W_{M}, U_{M} and $W \backslash W_{M}, U \backslash U_{M}$ and W_{M} we get a graph G^{\prime} with $W\left(G^{\prime}\right)<W(G)$. Note that the matching number of G^{\prime} is at least $k+1$. Hence, $G^{\prime} \notin \mathscr{G}_{n}^{k}$ and $G \neq G^{\prime}$. Based on G^{\prime}, we construct a new graph, say $G^{\prime \prime}$, which is obtained from G^{\prime} by deleting all the edges between $U \backslash U_{M}$ and W_{M}, and adding all the edges between $U \backslash U_{M}$ and $U_{M} . G^{\prime \prime}$ is depicted in Fig. 1. It is routine to check that $G^{\prime \prime} \cong K_{k, n-k}$.

Let $\left|U \backslash U_{M}\right|=n_{1},\left|W \backslash W_{M}\right|=n_{2}$. Suppose $n_{2} \geq n_{1}$. We partition $V_{G^{\prime}}=V_{G^{\prime \prime}}$ into $U_{M} \cup W_{M} \cup\left(U \backslash U_{M}\right) \cup\left(W \backslash W_{M}\right)$ as shown in Fig. 1. By direct calculation, for all $x \in W \backslash W_{M}$ (resp. $y \in U_{M}, z \in W_{M}, w \in U \backslash U_{M}$), one has

$$
\begin{array}{lc}
D_{G^{\prime}}(x)=3 q+3 n_{1}+2 n_{2}-2, & D_{G^{\prime \prime}}(x)=3 q+2 n_{1}+2 n_{2}-2, \quad D_{G^{\prime}}(y)=3 q+2 n_{1}+n_{2}-2, \\
D_{G^{\prime \prime}}(y)=3 q+n_{1}+n_{2}-2, \quad & D_{G^{\prime}}(z)=3 q+2 n_{2}+n_{1}-2, \quad D_{G^{\prime \prime}}(z)=3 q+2 n_{1}+2 n_{2}-2, \\
D_{G^{\prime}}(w)=3 q+3 n_{2}+2 n_{1}-2, & D_{G^{\prime \prime}}(w)=3 q+2 n_{2}+2 n_{1}-2 .
\end{array}
$$

https://daneshyari.com/en/article/419062

Download Persian Version:
https://daneshyari.com/article/419062

Daneshyari.com

[^0]: *h Financially supported by the National Natural Science Foundation of China (Grant Nos. 11271149, 11371062), the Program for New Century Excellent Talents in University (Grant No. NCET-13-0817) and the Special Fund for Basic Scientific Research of Central Colleges (Grant No. CCNU13F020).

 * Corresponding author. Tel.: +86 2767867450; fax: +86 2767867452.

 E-mail addresses: Iscmath@mail.ccnu.edu.cn, li@mail.ccnu.edu.cn (S.C. Li), songyibing88@126.com (Y.B. Song).

