Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note Forbidding a set difference of size 1

Imre Leader^a, Eoin Long^{b,*}

^a Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Cambridge CB3 0WB, United Kingdom

^b School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom

only on k.

ABSTRACT

ARTICLE INFO

Article history: Received 28 April 2013 Received in revised form 17 December 2013 Accepted 25 December 2013 Available online 27 January 2014

Keywords: Sperner family Antichain Extremal set theory

1. Introduction

A family $\mathcal{A} \subset \mathcal{P}[n] = \mathcal{P}(\{1, ..., n\})$ is said to be a *Sperner family* or *antichain* if $A \not\subset B$ for all distinct $A, B \in \mathcal{A}$. Sperner's theorem [9], one of the earliest results in extremal combinatorics, states that every Sperner family $\mathcal{A} \subset \mathcal{P}[n]$ satisfies

$$|\mathcal{A}| \le \binom{n}{\lfloor n/2 \rfloor}.$$
(1)

How large can a family $\mathcal{A} \subset \mathcal{P}[n]$ be if it does not contain A, B with $|A \setminus B| = 1$? Our aim

in this paper is to show that any such family has size at most $\frac{2+o(1)}{n} \binom{n}{\lfloor n/2 \rfloor}$. This is tight up

to a multiplicative constant of 2. We also obtain similar results for families $\mathcal{A} \subset \mathcal{P}[n]$ with

 $|A \setminus B| \neq k$, showing that they satisfy $|\mathcal{A}| \leq \frac{C_k}{n^k} \binom{n}{|n/2|}$, where C_k is a constant depending

(We remark that this paper is self-contained; for background on Sperner's theorem and related results see [2].)

Kalai [5] noted that the Sperner condition can be rephrased as follows: \mathcal{A} does not contain two sets A and B such that, in the unique subcube of $\mathcal{P}[n]$ spanned by A and B, A is the bottom point and B is the top point. He asked: what happens if we forbid A and B to be at a different position in this subcube? In particular, he asked how large $\mathcal{A} \subset \mathcal{P}[n]$ can be if we forbid A and B to be at a 'fixed ratio' p : q in this subcube. That is, we forbid A to be p/(p + q) of the way up this subcube and B to be q/(p + q) of the way up this subcube. Equivalently, $q|A \setminus B| \neq p|B \setminus A|$ for all distinct $A, B \in \mathcal{A}$. Note that the Sperner condition corresponds to taking p = 0 and q = 1. In [8], we gave an asymptotically tight answer for all ratios p : q, showing that one cannot improve on the 'obvious' example, namely the q - p middle layers of $\mathcal{P}[n]$.

Theorem 1.1 ([8]). Let p, q be coprime natural numbers with $q \ge p$. Suppose $A \subset \mathcal{P}[n]$ does not contain distinct A, B with $q|A \setminus B| = p|B \setminus A|$. Then

$$|\mathcal{A}| \le (q - p + o(1)) \binom{n}{\lfloor n/2 \rfloor}.$$
(2)

Up to the o(1) term, this is best possible. Indeed, the proof of Theorem 1.1 in [8] also gives the exact maximum size of such A for infinitely many values of n.

* Corresponding author. Tel.: +44 07551935549.

© 2014 Elsevier B.V. All rights reserved.

E-mail addresses: I.Leader@dpmms.cam.ac.uk (I. Leader), Eoin.Long@maths.ox.ac.uk, E.P.Long@qmul.ac.uk (E. Long).

⁰¹⁶⁶⁻²¹⁸X/\$ - see front matter © 2014 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.dam.2013.12.021

Another natural question considered in [8] asks how large a family $\mathcal{A} \subset \mathcal{P}[n]$ can be if, instead of forbidding a fixed ratio, we forbid a 'fixed distance' in these subcubes. For example, how large can $\mathcal{A} \subset \mathcal{P}[n]$ be if A is not at distance 1 from the bottom of the subcube spanned with *B* for all *A*, $B \in A$? Equivalently, $|A \setminus B| \neq 1$ for all *A*, $B \in A$. Here the following family A^* provides a lower bound: let A^* consist of all sets A of size $\lfloor n/2 \rfloor$ such that $\sum_{i \in A} i \equiv r \pmod{n}$ where $r \in \{0, ..., n-1\}$ is chosen to maximise $|A^*|$. Such a choice of r gives $|A^*| \ge \frac{1}{n} \binom{n}{\lfloor n/2 \rfloor}$. Note that if we had $|A \setminus B| = 1$ for some $A, B \in A^*$, since |A| = |B|, we would also have $|B \setminus A| = 1$ – letting $A \setminus B = \{i\}$ and $B \setminus A = \{j\}$ we then have $i - j \equiv 0 \pmod{n}$ giving i = j, a contradiction.

In [8], we showed that any such family $\mathcal{A} \subset \mathcal{P}[n]$ satisfies $|\mathcal{A}| \leq \frac{C}{n} 2^n = O(\frac{1}{n^{1/2}} {n \choose \lfloor n/2 \rfloor})$ for some absolute constant C > 0. We conjectured that the family \mathcal{A}^* constructed in the previous paragraph is asymptotically maximal (Conjecture 5) of [8]). In Section 2, we prove that this is true up to a factor of 2.

Theorem 1.2. Suppose that $A \subset \mathcal{P}[n]$ is a family of sets with $|A \setminus B| \neq 1$ for all $A, B \in A$. Then $|\mathcal{A}| \leq \frac{2+o(1)}{n} \binom{n}{\lfloor n/2 \rfloor}$.

One could also ask what happens if we forbid a fixed set difference of size k, instead of 1 (where we think of k as fixed and *n* as varying). This turns out to be harder. In [8] we noted that the following family $\mathcal{A}_k^* \subset \mathcal{P}[n]$ gives a lower bound of $\frac{1}{n^k} \binom{n}{\lfloor n/2 \rfloor}$: supposing *n* is prime, let \mathcal{A}_k^* consist of all sets *A* of size $\lfloor n/2 \rfloor$ which satisfy $\sum_{i \in A} i^d \equiv 0 \pmod{n}$ for all $1 \le d \le k$. In Section 3 we prove that this is also best possible up to a multiplicative constant.

Theorem 1.3. Let $k \in \mathbb{N}$. Suppose that $\mathcal{A} \subset \mathcal{P}[n]$ with $|A \setminus B| \neq k$ for all $A, B \in \mathcal{P}[n]$. Then $|\mathcal{A}| \leq \frac{C_k}{n^k} \binom{n}{\lfloor n/2 \rfloor}$, where C_k is a constant depending only on k.

Our notation is standard. We write [n] for $\{1, \ldots, n\}$, and [a, b] for the interval $\{a, \ldots, b\}$. For a set X, we write $\mathcal{P}(X)$ for the power set of X and $X^{(k)}$ for the collection of all k-sets in X. We often suppress integer-part signs.

2. Proof of Theorem 1.2

Our proof of Theorem 1.2 uses Katona's averaging method (see [6]), but modified in a key way. Ideally here, as in the proof of Sperner's theorem or Theorem 1.1, we would find configurations of sets covering $\mathcal{P}[n]$ so that each configuration has at most $C/n^{3/2}$ proportion of its elements in A, for any family A satisfying $|A \setminus B| \neq 1$ for A, $B \in A$. Then, provided that these configurations cover $\mathcal{P}[n]$ uniformly, we could count incidences between elements of A and these configurations to get an upper bound on $|\mathcal{A}|$.

However, we do not see how to find such configurations. So instead our approach is as follows. Rather than insisting that each of the sets in our configuration is well-behaved (in the sense above), we will only require that most of them have at most $C/n^{3/2}$ proportion of their elements in A. It turns out that this can be achieved, and that it is good enough for our purposes.

Proof. We will prove the proposition under the assumption that *n* is even—this can easily be removed. To begin with, remove

all elements in \mathcal{A} of size smaller than $n/2 - n^{2/3}$ or larger than $n/2 + n^{2/3}$. By Chernoff's inequality (see Appendix A of [1]), we have removed at most $o\left(\frac{1}{n}\binom{n}{n/2}\right)$ sets. Let \mathcal{B} denote the remaining sets in \mathcal{A} . It suffices to show that $|\mathcal{B}| \leq \frac{2+o(1)}{n}\binom{n}{n/2}$. We write $I = [1, n/2 + n^{2/3}]$ and $J = [n/2 + n^{2/3} + 1, n]$ so that $[n] = I \cup J$. Let us choose a permutation $\sigma \in S_n$ uniformly at random. Given this choice of σ , for all $i \in I, j \in J$ let $C_{i,j} = \{\sigma(1), \ldots, \sigma(i)\} \cup \{\sigma(j)\}$. Let $C_j = \{C_{i,j} : i \in I\}$, and call these

sets 'partial chains'. Also let $C = \bigcup_{j \in J} C_j$. Now, for any choice of $\sigma \in S_n$, at most one of the partial chains of C can contain an element of \mathcal{B} . Indeed, suppose both $C_{i_1,j_1} = C_{i_1} \cup \{\sigma(j_1)\}$ and $C_{i_2,j_2} = C_{i_2} \cup \{\sigma(j_2)\}$ lie in \mathcal{A} for distinct $j_1, j_2 \in J$. Since C_{i_1} and C_{i_2} are elements of a chain, without loss of generality we may assume $C_{i_1} \subset C_{i_2}$. But then $(C_{i_1} \cup \{\sigma(j_1)\}) \setminus (C_{i_2} \cup \{\sigma(j_2)\}) = \{\sigma(j_1)z\}$, which contradicts $|\mathcal{A} \setminus B| \neq 1$ for all $A, B \in \mathcal{B}$.

Note that the above bound alone does not guarantee the upper bound on $|\mathcal{A}|$ stated in the theorem, since a fixed partial chain C_i may contain many elements of A. We now show that this cannot happen too often.

For $i \in I$ and $j \in J$, let $X_{i,j}$ denote the random variable given by

$$X_{i,j} = \begin{cases} 1 & \text{if } C_{i,j} \in \mathcal{B} \text{ and } C_{k,j} \notin \mathcal{B} & \text{for } k < i; \\ 0 & \text{otherwise.} \end{cases}$$

From the previous paragraph, we have

$$\sum_{i,j} X_{i,j} \le 1 \tag{3}$$

where both here and below the sum is taken over all $i \in I$ and $j \in J$. Taking expectations on both sides of (3) this gives

$$\sum_{i,j} \mathbb{E}(X_{i,j}) \le 1.$$
(4)

3)

Download English Version:

https://daneshyari.com/en/article/419067

Download Persian Version:

https://daneshyari.com/article/419067

Daneshyari.com