Note

Forbidding a set difference of size 1

CrossMark

Imre Leader ${ }^{\text {a }}$, Eoin Long ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Cambridge CB3 0WB, United Kingdom
${ }^{\mathrm{b}}$ School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom

ARTICLE INFO

Article history:

Received 28 April 2013
Received in revised form 17 December 2013
Accepted 25 December 2013
Available online 27 January 2014

Keywords:

Sperner family
Antichain
Extremal set theory

Abstract

How large can a family $\mathcal{A} \subset \mathcal{P}[n]$ be if it does not contain A, B with $|A \backslash B|=1$? Our aim in this paper is to show that any such family has size at most $\frac{2+o(1)}{n}\binom{n}{\lfloor n / 2\rfloor}$. This is tight up to a multiplicative constant of 2 . We also obtain similar results for families $\mathcal{A} \subset \mathcal{P}[n]$ with $|A \backslash B| \neq k$, showing that they satisfy $|\mathcal{A}| \leq \frac{C_{k}}{n^{k}}\binom{n}{\lfloor n / 2\rfloor}$, where C_{k} is a constant depending only on k. © 2014 Elsevier B.V. All rights reserved.

1. Introduction

A family $\mathcal{A} \subset \mathscr{P}[n]=\mathscr{P}(\{1, \ldots, n\})$ is said to be a Sperner family or antichain if $A \not \subset B$ for all distinct $A, B \in \mathcal{A}$. Sperner's theorem [9], one of the earliest results in extremal combinatorics, states that every Sperner family $\mathcal{A} \subset \mathscr{P}$ [n] satisfies

$$
\begin{equation*}
|\mathcal{A}| \leq\binom{ n}{\lfloor n / 2\rfloor} \tag{1}
\end{equation*}
$$

(We remark that this paper is self-contained; for background on Sperner's theorem and related results see [2].)
Kalai [5] noted that the Sperner condition can be rephrased as follows: \mathcal{A} does not contain two sets A and B such that, in the unique subcube of $\mathscr{P}[n]$ spanned by A and B, A is the bottom point and B is the top point. He asked: what happens if we forbid A and B to be at a different position in this subcube? In particular, he asked how large $\mathcal{A} \subset \mathscr{P}$ [n] can be if we forbid A and B to be at a 'fixed ratio' $p: q$ in this subcube. That is, we forbid A to be $p /(p+q)$ of the way up this subcube and B to be $q /(p+q)$ of the way up this subcube. Equivalently, $q|A \backslash B| \neq p|B \backslash A|$ for all distinct $A, B \in \mathcal{A}$. Note that the Sperner condition corresponds to taking $p=0$ and $q=1$. In [8], we gave an asymptotically tight answer for all ratios $p: q$, showing that one cannot improve on the 'obvious' example, namely the $q-p$ middle layers of $\mathcal{P}[n]$.

Theorem 1.1 ([8]). Let p, q be coprime natural numbers with $q \geq p$. Suppose $\mathcal{A} \subset \mathcal{P}[n]$ does not contain distinct A, B with $q|A \backslash B|=p|B \backslash A|$. Then

$$
\begin{equation*}
|\mathcal{A}| \leq(q-p+o(1))\binom{n}{\lfloor n / 2\rfloor} . \tag{2}
\end{equation*}
$$

Up to the $o(1)$ term, this is best possible. Indeed, the proof of Theorem 1.1 in [8] also gives the exact maximum size of such \mathcal{A} for infinitely many values of n.

[^0]Another natural question considered in [8] asks how large a family $\mathcal{A} \subset \mathcal{P}[n]$ can be if, instead of forbidding a fixed ratio, we forbid a 'fixed distance' in these subcubes. For example, how large can $\mathcal{A} \subset \mathcal{P}[n]$ be if A is not at distance 1 from the bottom of the subcube spanned with B for all $A, B \in \mathcal{A}$? Equivalently, $|A \backslash B| \neq 1$ for all $A, B \in \mathcal{A}$. Here the following family \mathcal{A}^{*} provides a lower bound: let \mathcal{A}^{*} consist of all sets A of size $\lfloor n / 2\rfloor$ such that $\sum_{i \in A} i \equiv r(\bmod n)$ where $r \in\{0, \ldots, n-1\}$ is chosen to maximise $\left|\mathcal{A}^{*}\right|$. Such a choice of r gives $\left|\mathcal{A}^{*}\right| \geq \frac{1}{n}\binom{n}{\lfloor n / 2\rfloor}$. Note that if we had $|A \backslash B|=1$ for some $A, B \in \mathcal{A}^{*}$, since $|A|=|B|$, we would also have $|B \backslash A|=1$ - letting $A \backslash B=\{i\}$ and $B \backslash A=\{j\}$ we then have $i-j \equiv 0(\bmod n)$ giving $i=j$, a contradiction.

In [8], we showed that any such family $\mathcal{A} \subset \mathcal{P}[n]$ satisfies $|\mathcal{A}| \leq \frac{C}{n} 2^{n}=O\left(\frac{1}{n^{1 / 2}}\binom{n}{\lfloor n / 2\rfloor}\right.$) for some absolute constant $C>0$. We conjectured that the family \mathcal{A}^{*} constructed in the previous paragraph is asymptotically maximal (Conjecture 5 of [8]). In Section 2, we prove that this is true up to a factor of 2.
Theorem 1.2. Suppose that $\mathcal{A} \subset \mathscr{P}[n]$ is a family of sets with $|A \backslash B| \neq 1$ for all $A, B \in \mathcal{A}$. Then $|\mathcal{A}| \leq \frac{2+o(1)}{n}\binom{n}{\lfloor n / 2\rfloor}$.
One could also ask what happens if we forbid a fixed set difference of size k, instead of 1 (where we think of k as fixed and n as varying). This turns out to be harder. In [8] we noted that the following family $\mathcal{A}_{k}^{*} \subset \mathcal{P}$ [n] gives a lower bound of $\frac{1}{n^{k}}\binom{n}{\lfloor n / 2\rfloor}$: supposing n is prime, let \mathscr{A}_{k}^{*} consist of all sets A of size $\lfloor n / 2\rfloor$ which satisfy $\sum_{i \in A} i^{d} \equiv 0(\bmod n)$ for all $1 \leq d \leq k$. In Section 3 we prove that this is also best possible up to a multiplicative constant.
Theorem 1.3. Let $k \in \mathbb{N}$. Suppose that $\mathcal{A} \subset \mathscr{P}[n]$ with $|A \backslash B| \neq k$ for all $A, B \in \mathscr{P}[n]$. Then $|\mathcal{A}| \leq \frac{C_{k}}{n^{k}}\binom{n}{\lfloor n / 2\rfloor}$, where C_{k} is a constant depending only on k.

Our notation is standard. We write $[n]$ for $\{1, \ldots, n\}$, and $[a, b]$ for the interval $\{a, \ldots, b\}$. For a set X, we write $\mathcal{P}(X)$ for the power set of X and $X^{(k)}$ for the collection of all k-sets in X. We often suppress integer-part signs.

2. Proof of Theorem 1.2

Our proof of Theorem 1.2 uses Katona's averaging method (see [6]), but modified in a key way. Ideally here, as in the proof of Sperner's theorem or Theorem 1.1, we would find configurations of sets covering $\mathcal{P}[n]$ so that each configuration has at most $C / n^{3 / 2}$ proportion of its elements in \mathcal{A}, for any family \mathcal{A} satisfying $|A \backslash B| \neq 1$ for $A, B \in \mathcal{A}$. Then, provided that these configurations cover $\mathcal{P}[n]$ uniformly, we could count incidences between elements of \mathcal{A} and these configurations to get an upper bound on $|\mathcal{A}|$.

However, we do not see how to find such configurations. So instead our approach is as follows. Rather than insisting that each of the sets in our configuration is well-behaved (in the sense above), we will only require that most of them have at most $C / n^{3 / 2}$ proportion of their elements in \mathcal{A}. It turns out that this can be achieved, and that it is good enough for our purposes.
Proof. We will prove the proposition under the assumption that n is even-this can easily be removed. To begin with, remove all elements in \mathcal{A} of size smaller than $n / 2-n^{2 / 3}$ or larger than $n / 2+n^{2 / 3}$. By Chernoff's inequality (see Appendix A of [1]), we have removed at most $o\left(\frac{1}{n}\binom{n}{n / 2}\right)$ sets. Let \mathfrak{B} denote the remaining sets in \mathcal{A}. It suffices to show that $|\mathscr{B}| \leq \frac{2+o(1)}{n}\binom{n}{n / 2}$.

We write $I=\left[1, n / 2+n^{2 / 3}\right]$ and $J=\left[n / 2+n^{2 / 3}+1, n\right]$ so that $[n]=I \cup J$. Let us choose a permutation $\sigma \in S_{n}$ uniformly at random. Given this choice of σ, for all $i \in I, j \in J$ let $C_{i, j}=\{\sigma(1), \ldots \sigma(i)\} \cup\{\sigma(j)\}$. Let $\mathcal{C}_{j}=\left\{C_{i, j}: i \in I\right\}$, and call these sets 'partial chains'. Also let $\mathcal{C}=\bigcup_{j \in J} \mathcal{C}_{j}$.

Now, for any choice of $\sigma \in S_{n}$, at most one of the partial chains of \mathcal{C} can contain an element of \mathscr{B}. Indeed, suppose both $C_{i_{1}, j_{1}}=C_{i_{1}} \cup\left\{\sigma\left(j_{1}\right)\right\}$ and $C_{i_{2}, j_{2}}=C_{i_{2}} \cup\left\{\sigma\left(j_{2}\right)\right\}$ lie in \mathcal{A} for distinct $j_{1}, j_{2} \in J$. Since $C_{i_{1}}$ and $C_{i_{2}}$ are elements of a chain, without loss of generality we may assume $C_{i_{1}} \subset C_{i_{2}}$. But then $\left(C_{i_{1}} \cup\left\{\sigma\left(j_{1}\right)\right\}\right) \backslash\left(C_{i_{2}} \cup\left\{\sigma\left(j_{2}\right)\right\}\right)=\left\{\sigma\left(j_{1}\right) z\right\}$, which contradicts $|A \backslash B| \neq 1$ for all $A, B \in \mathscr{B}$.

Note that the above bound alone does not guarantee the upper bound on $|\mathcal{A}|$ stated in the theorem, since a fixed partial chain \mathcal{C}_{i} may contain many elements of \mathcal{A}. We now show that this cannot happen too often.

For $i \in I$ and $j \in J$, let $X_{i, j}$ denote the random variable given by

$$
X_{i, j}=\left\{\begin{array}{ll}
1 & \text { if } C_{i, j} \in \mathscr{B} \text { and } C_{k, j} \notin \mathscr{B} \\
0 & \text { otherwise }
\end{array} \quad \text { for } k<i ;\right.
$$

From the previous paragraph, we have

$$
\begin{equation*}
\sum_{i, j} X_{i, j} \leq 1 \tag{3}
\end{equation*}
$$

where both here and below the sum is taken over all $i \in I$ and $j \in J$. Taking expectations on both sides of (3) this gives

$$
\begin{equation*}
\sum_{i, j} \mathbb{E}\left(X_{i, j}\right) \leq 1 \tag{4}
\end{equation*}
$$

https://daneshyari.com/en/article/419067

Download Persian Version:

https://daneshyari.com/article/419067

Daneshyari.com

[^0]: * Corresponding author. Tel.: +44 07551935549.

 E-mail addresses: I.Leader@dpmms.cam.ac.uk (I. Leader), Eoin.Long@maths.ox.ac.uk, E.P.Long@qmul.ac.uk (E. Long).

