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a b s t r a c t

Let G = (V , A) be a directed graph and F be a set of items. The Location-Dispatching
Problem consists of determining subsets Li ⊆ F located at nodes i ∈ V , minimizing the
sum of two costs: a piecewise linear installation cost associated with Li and an access
cost for each node of V to reach a copy of each item of F . We formulate this problem as
a linear program with binary variables x and integer variables z. We propose a facial study
of the associated polytope and we introduce the so-called integrity hop cost inequalities
that force z to be an integer as soon as x is binary. Using this, we devise a branch-and-
cut algorithm and report some experimental results. This algorithm has been used to solve
ContentDeliveryNetwork instances in order to optimize aVideoOnDemand (VoD) system.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The precise study of combinatorial location problems allows to answer many questions arising when one wishes to
determine how many equipments to deploy, where to install these equipments and how many items must be dispatched
in each of these equipments, in order to satisfy the client requests. Such a location model is, in particular, well designed to
analyze situations where the optimal configuration is a compromise between high installation costs (when equipments are
located everywhere) and high access costs (when very few equipments are installed and a client is far away from requested
items). In this article, wewill study a particular location problem to gain some useful insight in the decision process required
to deploy a set of storage equipments in a telecommunication network.

Let G = (V , A) be a directed graph of n nodes and F be a set of m items. Nodes of graph G represent both the clients and
the potential places where copies of each items have to be dispatched.

In this paper, an equipment will be able to store at most µ items, with 1 ≤ µ ≤ m. Such an equipment will be denoted by
a µ-batch, that is to say a subset of at most µ items. We will associate with every node i of V a subset of (distinct) items
Li ⊆ F . In order to store subset Li at node i, Li must be partitioned into a minimum number zi of µ-batches. Consequently, zi
is required to be an integral multiple ofµ. By setting Ci ∈ R+ the installation cost of aµ-batch at node i, the total installation
cost of a subset Li is then the piecewise linear function C(Li) = Cizi, with zi =


|Li|
µ


.

Moreover, the total number of µ-batches,


i∈V zi, must be at most p where p is a given integer such that pµ ≥ m.
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We denote by cijf ∈ R+, i ∈ V , j ∈ V , f ∈ F , the access cost for a node j to reach an item f dispatched in the subset Li of a
node i. Let di,j ≥ 0, (i, j) ∈ A, be the distance between nodes i and j in the layout graph G. For a given item f ∈ F , the access
cost cijf is proportional to the minimum length from j to i in G and then ciif = 0.
The Location-Dispatching Problem (LDP) consists of determining subsets of items Li ⊆ F , i ∈ V , and assigning a node i ∈ V to
each pair (j, f ), j ∈ V , f ∈ F , such that f ∈ Li and


i∈V zi ≤ p, so that the sum of installation and access costs isminimum, i.e.

i∈V

Cizi +

j∈V


f∈F

min{cijf | i ∈ V and f ∈ Li}

is minimum.
We will call a node i ∈ V median if Li ≠ ∅. In fact, solving an LDP instance will correspond to give to each client j a way to
reach a copy of each item among the µ-batches located on median nodes. Notice that a solution must satisfy ∪i∈V Li = F
but the subsets Li need not to be a partition of F .

Many direct applications of the Location-Dispatching Problem can be found in industry when location, production
allocation and client assignment decisions have to be taken simultaneously. This is the case, for instance, when a company
needs both to locate new equipments (median nodes) and dispatch the products (items) that should be produced or stored
inside each of them,with respect to the cost of the product access for their clients. In this case, in the layout graphG = (V , A),
the nodes of V correspond both to the clients and the potential facility locations, and the arcs of A represent the possible
roads between them. Note that if a node cannot support a facility, the cost Ci can be set to a very high value.

In this article, we will focus on an application of the Location-Dispatching Problem to Content Delivery Network (CDN)
design [4]. A Content Delivery Network is a system where a particular content (files, videos, etc...) is distributed over
several interconnected computers and servers instead of being stored in a single central server (in a classical client–server
architecture). The objective of such a decentralized structure is to reduce the load on backbone links, possibly avoiding
congestion in bottleneck links around the central server, and, as a result, improve the QoE (Quality of Experience) for the
clients. The challenge of CDNs is to distribute efficiently the content as closely as possible to the clients so that their future
requestswill be fulfilled by these closely located servers. In this case, the layout graphG = (V , A) corresponds to the physical
telecommunication network where the nodes of V are both clients and potential server locations, and of the arcs of A are
the telecommunications links between them. In particular, a CDN can be used to build a Video on Demand (VoD) system
where the videos are replicated and stored on several servers. In fact, an LDP solution corresponds to the decision to locate
servers containing copies of the movies of F so that each client has a close access to a copy of each movies. A server on a
node can be equipped with several hard-disks, each one of capacity µ. The resulting cost is the sum of the installation cost
of the servers (µ-batches) and the access cost for each client to reach each movie.

The LDP can be seen as a particular facility location problem. In the well-known Uncapacitated Facility Location Problem
(UFLP) (also called Simple Plant Location Problem), some facility locations are to be chosen among a set of candidates and
each customer must be allocated to a facility, in such a way that the total (installation plus allocation) cost is minimized.
When m = 1, LDP is exactly UFLP and is then NP-hard [8]. The survey [11] gives integer formulations for several facility
location problems when several types of products have to be managed. In this survey, LDP is not introduced but can be seen
as a particular case of the so-calledMulti-Product Uncapacitated Facility Location Problem. To the best of our knowledge, LDP
was not treated before in the literature.
When the number of facilities is fixed to p, UFLP is then called the p-median problem (PMP) which is also NP-hard [10]. In
fact, when m = 1, Ci = 0 and ciif = 0, for i = 1, . . . , n and f = 1, . . . ,m, LDP is exactly the p-median problem. A complete
polyhedral and experimental study on the p-median polytope can be found in [5,3].

In the first sectionwewill present themodel and introduce notation, then, in Section 2,wewill devise a linear formulation
with binary variables x and integer variables z. Our polyhedral results are given in Section 3 togetherwith new facet defining
inequalities, called integrity hop cost inequalities, that force z to be integer as soon as x is binary. In Section 4, wewill focus on
a branch-and-cut algorithm and give some experimental results. In Section 5, we will show how the Location-Dispatching
problem may be used for solving a CDN design problem.

2. Mathematical model

Let (G, F , p, µ, c, C) be an LDP instance where G = (V , A) is a graph with n nodes, F is a set of m items, µ and p are
integers such that 1 ≤ µ ≤ m and pµ ≥ m, Ci ∈ R+ is the cost of locating a µ-batch of items at node i and cijf ∈ R+ is the
access cost for a node j to reach an item f dispatched at node i.

We first give a graphical representation of the LDP instance (G, F , p, µ, c, C). Let Km
n the complete directed multi-graph

with n nodes and, for every pair (i, j) ∈ V × V , m parallel arcs. Each arc is labeled with a distinct item f of F . In Km
n , an

arc (i, j, f ), i ∈ V , j ∈ V , f ∈ F , will correspond to a median node i which gives to node j an access to item f . A graphical
representation of an LDP solution can then be represented by a subgraph H(V ,D) of Km

n where, for each node i and each
item f , there is an unique arc (i, j, f ) that indicates the minimum cost access given by a median node i to node j for the item
f . A loop arc (i, i, f ) in subgraph H then corresponds to the fact that node i has a direct access to item f in its own Li subset.
Fig. 1 gives an example of such multi-graph which corresponds to an LDP solution on 5 nodes and 3 items with µ = 2. In
this solution, there are 3 median nodes indicated by squares and 2 non-median nodes indicated by circles. The solid (resp.
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