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a b s t r a c t

In this paper, we present a new formulation for the Time-Dependent Traveling Salesman
Problem (TDTSP). We start by reviewing well known natural formulations with some
emphasis on the formulation by Picard and Queyranne (1978) [22]. Themain feature of this
formulation is that it uses, as a subproblem, an exact description of the n-circuit problem.
Then, we present a new formulation that uses more variables and is based on using, for
each node, a stronger subproblem, namely an n-circuit subproblem with the additional
constraint that the corresponding node is not repeated in the circuit. Although the new
model has more variables and constraints than the original PQ model, the results given
from our computational experiments show that the linear programming relaxation of the
newmodel gives, formany of the instances tested, gaps that are close to zero. Thus, the new
model isworth investigating for solving TDTSP instances.Wehave also provided a complete
characterization of the feasible set of the corresponding linear programming relaxation
in the space of the variables of the PQ model. This characterization permits us to suggest
alternative methods of using the proposed formulations.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Consider a graph G = (V , A), where V = {1, 2, . . . , n} and A = {(i, j) : i, j = 1, . . . , n, i ≠ j}. The Time-Dependent
Traveling Salesman Problem (TDTSP) is to find a minimum cost Hamiltonian circuit, starting and ending on node 1, where
arc costs depend on its position in the tour. Thus, to each arc (i, j) in A and each possible position h of the arc in the tour we
associate a cost chij . Clearly, an arc (1, j) leaving node 1, which we will also denote by the depot, can be only in position 1 and
an arc (i, 1) entering the depot can be only in the last position. Every other arc (i, j), i, j ≠ 1, can be located in positions
h = 2, . . . , n − 1.

The TDTSP wasmotivated by the following one-machine scheduling problem. Consider a set of n−1 jobs, corresponding
to the nodes in the set V \ {1}, to be performed on a single machine which can handle one job at a time. Transition costs
chij occur when job i is to be processed at position h and in addition, is immediately followed by job j. We assume an idle
state for the machine corresponding to the initial and final states of the machine and which will be represented by node 1.
Then, we have a setup cost for any job j, given by c11j, and a cooling cost for any job i given by cni1. The problem is to find the
cheapest sequence for performing all jobs.

Two special cases of the TDTSP are well known. The most well known case, the Asymmetric Traveling Salesman Problem
(ATSP) (see, for instance, [18]), is obtained when for every arc (i, j) we have chij = cij for every h (that is, the cost of each arc
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does not depend on its position). The other case, the so-called Cumulative Traveling Salesman Problem (CTSP) also known
as the traveling deliveryman problem, is obtained by considering chij = (n − h)cij for every arc (i, j) and every h, where cij
is a given ‘‘base’’ cost. The CTSP models the situation where one wants to minimize the sum of all distances from node 1 to
any other node (excluding node 1). This model has applications in machine scheduling and delivery problems where one
seeks to minimize the average arrival time at the customer locations. We note that in deliver applications, the cost of an arc
(i, j) in position h is defined by (n − h + 1) cij since in this case one wants to compute in addition the total time that the
distributor is out of the depot. We note that models presented for one case are quite easily adapted for the other one and
the results taken from a small computational experiment performed with the models presented in this paper, indicate that
no significant difference arises when either one of the two versions is tried. Thus, we will present our models with the first
cost definition mentioned above.

Exact methods for solving the CTSP are described, among others, in [19,6,2] and, more recently, in [3,20,1]. Lucena [19]
proposes an algorithm based on a non-linear integer programming formulation by Picard and Queyranne in which lower
bounds are obtained from a Lagrangian relaxation and presents computational results for problems up to 30 nodes. A similar
approachwas followed by Bianco et al. [2] which derive a Lagrangian relaxation scheme from an integer linear programming
formulation also proposed by Picard and Queyranne (see next section). They solve instances with up to 35 nodes. Fischetti
et al. [6] provide a branch-and-bound algorithm based on a new integer programming formulation. The paper contains
results on the cumulative matroid that are used to derive lower bounds. Problems with up to 60 nodes are solved to
optimality. Bigras et al. [3] use a branch-and-cut scheme based on a path formulation. This is equivalent to the Picard
and Queyranne formulation strengthened with several classes of inequalities that are either taken from the ATSP problem
(subtour elimination inequalities and 2-matching inequalities) or taken from the node packing problem. The authors apply
this procedure also to the Makespan Problem and to the Total Tardiness Problem. They present results for instances taken
from the literature up to 50 nodes. Méndez-Díaz et al. [20] propose a new formulation which uses flow based variables as
well as variables from the linear ordering problem. In the scope of a branch-and-cut algorithm they introduce several classes
of valid inequalities (which are also shown to be facet defining). They produce computational results for instances with up
to 40 nodes. In [1], the authors present an approach that is similar to the one presented by Bigras et al. [3] in the sense that
column generation applied to a path model is also used. However, Abeledo et al. [1] use inequalities from the TDTSP. Some
of these inequalities are lifted versions of inequalities from the TSP, making their method stronger in theory. They produce
results taken from instances with up to 76 nodes. They also provide a polyhedral study of the TDTSP showing that one class
of the inequalities used in their method are facet defining.

Several formulations for the TDTSP described in the literature (see Section 2) can be obtained by using the binary variables
zhij for all (i, j) ∈ A and h = 1, . . . , n, indicating whether or not arc (i, j) ∈ A is in the hth position of the circuit. A formulation
that uses only the zhij variables is called a natural formulation. Natural formulations will be reviewed on Section 2 with some
emphasis on the well known formulation by Picard and Queyranne [22]. The main feature of this formulation is that it uses,
as a subproblem, an exact description of the n-circuit problem. An n-circuit is a circuit with n arcs which may repeat nodes
and even arcs.

The new models discussed in this paper (see Sections 3 and 5) are built on two features: they (i) use a stronger
subproblem, a n-circuit subproblem with the additional constraint that a given node is not repeated in the circuit and
(ii) combine these subproblems for all nodes. The new formulationwill use extra variables (besides the zhij variables) and thus,
it will fall in the class of so-called extended formulations. Although the model has more variables and constraints than the
original PQmodel, the results given fromour computational experiments show that the linear programming relaxation of the
newmodel gives, formany of the instances tested, gaps that are close to zero. Thus, the newmodel is worth investigating for
solving TDTSP instances, either byusing itwithin available ILP packages or as the subject of determiningwhat inequalities are
implied by the linear programming relaxation of the newmodel and are not redundant in the linear programming relaxation
of the Picard and Queyranne model. In fact, this is the topic of Section 4 and we will relate a set of such inequalities with
the inequalities described in [1]. We should emphasize that our goal is not to obtain a formulation that provides fast lower
bounds. Themain aim is to propose a formulation that produces very tight lower bounds permitting us to getmore insight on
the structure of the problem (e.g., projected inequalities, which subproblems are strong for a given commodity). However,
in the conclusions, we will suggest some alternative ways for handling the proposed formulation.

In the following we denote the linear programming relaxation of a given model P by PL and its linear programming
bound by v(PL). We will use the designation ‘‘exact’’ model for a model whose linear programming relaxation only has
integral extreme points. We let F(P) denote the set of feasible solutions of an integer (linear) program P . Given an integer
linear programming model P defined on two sets of variables x and z, we denote by Projx(F(PL)) the projection of the
polyhedron defined by PL into the space of the x variables, more precisely, Projx(F(PL)) = {x: there exist z such that
(x, z) is feasible for PL}.

2. Natural formulations for the TDTSP—the Picard and Queyranne formulation

The well known formulation by Picard and Queyranne [22], denoted by PQ in the sequel, is as follows:

minimize


(i,j)∈A


h=1,...,n

chijz
h
ijz

1
1j +


h=2,...,n


i∈V\{1}

zhij = 1 for all j ∈ V \ {1} (PQ1)
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