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a b s t r a c t

In this paper, we investigate heuristics for Approximate Graph Matching (AGM), in
particular when it can be formulated as a Maximum Common Edge Subgraph (MCES)
problem. First, we observe empirically that initializing a local search with a tiny subset
of a known optimal solution always results in much better solutions than starting with
an empty solution. The main challenge could then be to retrieve such small subsets for
any problem instance. For this purpose, we propose several local similarity measures and
evaluate their ability to predict node matches which could be used to start a local search.
The resulting algorithm (SIM-T) is a classic tabu algorithm that is initialized by a greedy
procedure relying mainly, in its earliest steps, on similarity measures.

We conducted experiments on a large collection of random graphs of various orders
(from 50 to 3000 nodes) and densities. Results obtained are mostly excellent, especially
on similar pairs of labeled graphs. Comparisons made with two recent state-of-the-art
algorithms – ‘‘BP’’ and ‘‘PATH’’ – indicate a superiority of our approach, in terms of both
scores and computation times.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Graph comparison is an important question which can be answered using graph matching techniques. Graphs to be
matched can represent images [24], molecules [19,26], software artifacts [1,14], and in most settings, desired matchings
are neither necessarily complete1 nor require perfect correspondences for all matched elements. Consequently, flexible
(approximate) formulations have been proposed to define graph matching as the search for matchings which optimize
a particular criterion. The Maximum Common Edge Subgraph (MCES) [19] problem is among the most well-known
approximate graph matching (AGM) formulations and consists, given two graphs, in finding a common partial subgraph with
a maximal number of edges. Other well-known AGM formulations used in the literature include the Error-Tolerant Graph
Matching (ETGM) problem [5,22] (find the cheapest transformation2 from one graph to the other), and theWeighted Graph
Matching (WGM) problem [25] (find a matching which minimizes the distance between the adjacency matrices of two
weighted graphs). Various kinds of techniques [11,19,20,27] have been proposed to address those formulations of graph
matching. We refer the reader to the extensive review and classification provided in [6].

In general, the choice of an AGM formulation (or objective function) follows some assumptions about the kind of graphs
one is trying to match; for instance, WGM formulations are indicated for complete matchings between graphs with real
numbers (weights) on their arcs. In our work, a core assumption is that the graphs to be matched are similar in the sense
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1 Some nodes may remain unmatched.
2 Edit operations are defined and costs are assigned to them.
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that a majority of nodes and arcs from one graph can be perfectly matched to nodes and arcs from the other graph. For
example, one graphmay be the result of transformations (due to noise or evolution) applied to the other graph and affecting
a limited number of its nodes and arcs. Such assumption is particularly relevant for graphs with symbolic labels (adequate
representations in many areas, from diagrams [1,14] to molecules [19,26]). It is also compatible with many graph matching
formulations such asGraph Isomorphism [17], Subgraph Isomorphism [7],MaximumCommon Induced Subgraph (MCIS) [8],
Maximum Common Edge Subgraph (MCES) [19], etc.

Our approach for solving such AGM problems combines local search techniques (such as the Tabu search [9]) and
node similarity measures. Local search algorithms represent a family of meta-heuristics in which a solution is iteratively
improved, through limited modifications, with the purpose of gradually moving toward optimal areas. Regarding node
similarity measures, they are often used in graph matching techniques [11,20] and can be presented as values assigned
to pairs of nodes to express the likelihood of matching them.

In [13], we found that initializing a local search with a few node matches taken from a known (near-) optimal solution
is enough to get excellent matchings and we proposed a similarity measure meant to predict the ‘‘right’’ node matches. As
a follow-up, we proposed in [12] an algorithm integrating similarity measures to the objective function and obtained very
interesting results on a synthetic benchmark.

The work reported in the current paper gives insight on how local similarity measures for node matches can be devised,
and investigates additional mechanisms for filtering out ambiguous and misleading node matches. As a result, new and
more effective local similarity measures are proposed and experimentally evaluated. Two algorithms using similarity,
including the similarity-aware tabu algorithm SIM-T, are thus tested and compared with two recent algorithms: BP3 [20]
and PATH [27]. Furthermore, the random graph generator previously used in [12,13], has been extended and can now
model undirected graphs and graphs labeled on nodes; hence, our experiments now include a larger spectrum of graphs.
Experimental results on those synthetic graphs for three specific AGM problems (including MCES and WGM) suggest that
our algorithm SIM-T outperforms BP and PATH, in terms of both quality (of the returnedmatching) and computational speed.

The remaining of the paper is organized as follows.We first present, in Section 2, our definition of the AGMproblem, then
in Section 3, the benchmarks on which our approach is evaluated. Section 4 introduces our tabu procedure and discusses
preliminary experiments. Section 5 presents our different propositions for the computation of local node similarity and their
evaluation. Section 6 describes our proposed algorithms (notably SIM-T ) and is followed by Section 7 which presents our
experimental plan for the comparisons with BP and PATH. Results of all algorithms are presented in Section 8. We finally
conclude in Section 9 with a general discussion including the limitations of our approach and some perspectives.

2. Problem definition

In the following, we introduce preliminary definitions and notations about graphs andmatchings. Then, we analyzewhat
a ‘‘good’’ matching may mean and finally propose the formal definition of the AGM problem we use in this paper.

2.1. Preliminary definitions

The graphs we consider are directed,4 and they have labels5 on their vertices and/or arcs.
LetΣV andΣA represent two finite sets of symbols. A graph, labeled on alphabetsΣV for nodes andΣA for arcs, is defined

as a quadruple (V , A, lV , lA) where: V is the finite set of vertices (or nodes); A ⊆ V × V is the set of arcs; lV : V → ΣV is the
node labeling function; and lA : A → ΣA is the arc labeling function.

For practical reasons, we also define another function LA : V × V → ΣA+ = ΣA ∪ {#} as follows: LA(x, y) = lA(x, y) if
(x, y) ∈ A, otherwise LA(x, y) = #. In other words, LA coincides with lA on A, and the symbol # is used in order to represent
the absence of an arc between two vertices.

Let us consider two graphs G1 = (V1, A1, lV1, LA1) and G2 = (V2, A2, lV2, LA2) labeled on the alphabets ΣV and ΣA.
Amatching between the two graphs is any relationµ ⊆ V1×V2 such that each vertex ismatched to atmost one vertex in the
other graph (the one-to-one constraint): ∀x, y ∈ V1, ∀z, t ∈ V2, (x, z), (x, t) ∈ µ ⇒ z = t and (x, z), (y, z) ∈ µ ⇒ x = y.
In the following, an element of µ (a couple) will be referred to as a node match.

2.2. Assessing the quality of a matching

Let us consider two graphs G1 and G2 and a matching µ between them. A node match (x1, x2) in µ matches a vertex
x1 ∈ V1 to a vertex x2 ∈ V2. We either observe a perfect vertex label match (lV (x1) = lV (x2)) or a vertex label error
(lV (x1) ≠ lV (x2)). Similarly, a couple of node matches ((x1, x2), (y1, y2)) ∈ µ × µ matches a pair (x1, y1) of vertices of
V1 to a pair (x2, y2) of vertices of V2. We identify four possible cases: (i) a perfect arc label match: the arcs share the same

3 BP stands for Bipartite.
4 Undirected graphs can be treated as symmetric directed graphs.
5 When there is only one label, the graphs can be considered unlabeled.
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