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Abstract

A well-known formula of Tutte and Berge expresses the size of a maximum matching in a graph G in terms of what is usually
called the deficiency. A subset X of V (G) for which this deficiency is attained is called a Tutte set of G. While much is known about
maximum matchings, less is known about the structure of Tutte sets. We explored the structural aspects of Tutte sets in another
paper. Here, we consider the algorithmic complexity of finding Tutte sets in a graph. We first give two polynomial algorithms for
finding a maximal Tutte set. We then consider the complexity of finding a maximum Tutte set, and show it is NP-hard for general
graphs, as well as for several interesting restricted classes such as planar graphs. By contrast, we show we can find maximum Tutte
sets in polynomial time for graphs of level O or 1, elementary graphs, and 1-tough graphs.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider only simple graphs. Our terminology will be standard. Good references for any undefined
terms are [9,13].

Given a graph G, define the deficiency of G, denoted by def (G), as the number of vertices unmatched in a maximum
matching of G. Thus the size of a maximum matching in G may be expressed as 1/2(]V (G)| — def(G)) edges.

Let w(G) (resp., wg(G), we(G)) denote the number of components (resp., odd, even components) of G. An important
result in matching theory is due to Tutte [12].

Theorem 1.1 (Tutte’s theorem). A graph G has a perfect matching if and only if wo(G — X) <|X| forall X € V(G).
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In 1958, Berge [7] extended Tutte’s theorem to give the exact size of a maximum matching in a graph G. In particular,
he proved that def(G) =max xcv () {wo(G — X) — | X|}, where the maximum is taken over all proper subsets of V (G).
Thus we have:

Theorem 1.2 (Tutte—Berge formula). The maximum size of a matching in a graph G is 1/2(|V(G)| — maxxcvG){wo
(G —X) —IX1}).

Motivated by the above formula, we define a Tutte set in G to be a subset X C V(G) such that wy(G — X) — | X]|
= def(G). Another standard term for Tutte set in the literature is barrier (see [11]).

In [5], we studied the structure of maximal Tutte sets in graphs. In this note we consider the algorithmic complexity
of finding maximal and maximum Tutte sets in graphs.

We begin with some necessary definitions and theorems from [5].

Let G be a graph. The Edmonds—Gallai decomposition of G is the partition Dg U Ag U Cg of V(G) given by

e D = {v € V(G)|some maximum matching in G fails to match v},
e Ag ={u € V(G) — Dg|u is adjacent to a vertex in D¢},
e C=V(G)— Dg — Ag.

In what follows, we omit the subscript G, if understood.

In particular, if G contains a perfect matching, then D = A =§, and G[C] = G. The Edmonds—Gallai decomposition
of a graph can be obtained efficiently by using Edmonds’ matching algorithm [8].

Before stating the Edmonds—Gallai structure theorem, we need the following definitions. A graph H is said to be
factor-critical if deleting any vertex from H results in a graph with a perfect matching. Such a matching in H is called
near-perfect. The primary importance of the Edmonds—Gallai decomposition is contained in the following theorem.

Theorem 1.3 (Edmonds—Gallai structure theorem). Let G be a graph and DU AU C be the Edmonds—Gallai decom-
position of G. Then A is a Tutte set, G| D] is the union of the odd components of G — A, each of which is factor-critical,
and G[C] is the union of the even components of G — A. Moreover, any maximum matching in G consists of

e a perfect matching in G[C];
e a near-perfect matching in every (odd) component of G[D];
e an edge joining v to some vertex in D, for every v € A.

The Edmonds—Gallai decomposition of G is closely related to the structure of maximal Tutte sets in G. Indeed [11],
the set A is the intersection of all the maximal Tutte sets in G, and no vertex in the set D can occur in any Tutte set of
G. In fact, we have (cf. [5, Theorem 3.5])

Theorem 1.4. Let G be a graph and X C V(G). Then X is a maximal Tutte set in G if and only if X = A U Z, where
Z is a maximal Tutte set in G[C].

Since G[C] always contains a perfect matching [11], this shows that finding maximal Tutte sets in G reduces to
finding maximal Tutte sets in graphs which contain a perfect matching. In the sequel, therefore, we will focus on the
complexity of finding a maximal Tutte set in a graph with a perfect matching.

In [5], we found that the study of maximal Tutte sets in a graph G with a perfect matching is greatly facilitated by
introducing a related graph D(G). When G contains a perfect matching, we define D(G) as follows: V(D (G))=V (G),
and E(D(G)) ={(x, y)|G — {x, y} contains a perfect matching}. We call a graph H a D-graph if H = D(G) for some
graph G.

There is a useful alternative definition of E(D(G)). Let M be a perfect matching in G. We denote by Py[x, y]
an M-alternating-path in G joining x and y, which begins and ends with an edge in M. Similarly, we denote by
P (x, y) an M-alternating-path in G joining x and y, which begins and ends with an edge not in M; the M-alternating-
paths Pys[x, y) and Py(x, y] are defined analogously. By a theorem of Berge [6], (x,y) € E(D(G)) if and only
if there exists a path Py[x, y] in G. Clearly, this definition of E(D(G)) is independent of the choice of the perfect
matching M.

A key result for this paper is the following (cf. [5, Theorem 3.4]).
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