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a b s t r a c t

In this paper a linear-time algorithm for the minimization of acyclic deterministic
finite-state automata is presented. The algorithm runs significantly faster than previous
algorithms for the same task. This is shown by a comparison of the running times of both
algorithms. Additionally, a variation of the newalgorithm is presentedwhich handles cyclic
automata as input. The new cycle-aware algorithm minimizes acyclic automata in the de-
sired way. In case of cyclic input, the algorithm minimizes all acyclic suffixes of the input
automaton.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Minimization of deterministic finite state automata (DFA) dates back to the 1950s [8,10]. The asymptotically fastest al-
gorithm for the general case of DFA is due to Hopcroft [7] and runs in O(n log n). There exists a linear time algorithm for the
minimization of acyclic deterministic finite-state automata (ADFA) by Revuz [14]. In this paper we present a new algorithm
for the minimization of ADFA [2] and compare it to Revuz’s well-established algorithm.

The newminimization algorithm cannot properly handle cyclic DFA as input.We therefore present an adapted algorithm
which does not hang upon cyclic input. The adapted algorithm leaves all states in or before cycles unchanged, butminimizes
all states in acyclic suffix paths.

2. Related work

Moore’s famous minimization algorithm [10] determines non-equivalence for pairs of states of an input DFA. It thus
runs with quadratic time and memory complexity. Starting with final and non-final states marked as non-equivalent, the
algorithm proceeds bymarking states reaching non-equivalent states (with the same symbol) as non-equivalent. In the end,
all states that cannot be marked as non-equivalent are joined into one.

Hopcroft’s algorithm [7] is the asymptotically fastest minimization algorithm in the general case. It runs in O(n log n).
Due to the complexity of the algorithm and its proof, a few papers were published that explain and re-explain the Hopcroft
algorithm [5,9].

The Brzozowski-algorithm [1] is quite special in that it computes theminimal automaton on the basis of the determiniza-
tion (det) and the inversion (inv) operations. The minimal automaton Am is computed from the source automaton A by:

Am ←− det(inv(det(inv(A)))). (1)
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The algorithm first joins all equivalent suffix-states together using the determinization in between the double-inversion.
The final determinization then joins the equivalent prefix states. The algorithm shows exponential worst case complexity,
since the complexity of determinization is exponential but it performs exceptionally well in practice [13].

For certain subsets of the deterministic finite-state automata, one can achieve minimization in linear time. The best
known algorithm is due to Revuz [14]—it minimizes acyclic DFAs in linear time. This approach is discussed in more detail in
Section 4.

A taxonomy of the most important finite state minimization algorithms can be found in [16,18] and in [17].

3. Preliminaries

In this section we introduce the basic definitions and theorems regarding languages and automata needed in this paper.

3.1. Alphabets, words and languages

An alphabet Σ is a finite set of symbols. A word w over Σ is a finite concatenation of symbols from Σ , its length |w| is
the number of concatenated symbols. The symbol w[i] = a ∈ Σ of a word w is the symbol at the i’th position. By ε we
denote the empty word (|ε| = 0). The set Σ∗ is the set of all words over Σ including the empty word, whereas Σ+ is the
set of all non-empty words. Any subset L ⊆ Σ∗ of Σ∗ is called a language. For convenience we assume each alphabet to be
a total order together with some operation <.

3.2. Automata and languages

A deterministic finite-state automaton (DFA) A = ⟨Q , q0, Σ, δ, F⟩ consists of a finite set of states Q , a designated start-
state q0 ∈ Q , an alphabet Σ , a set of final states F ⊆ Q and a transition function δ : Q ×Σ → Q . The transition function is
extended to the acceptance of words in the usual way:

δ∗(q, ε) = q
δ∗(q, aw) = δ∗(δ(q, a), w)

for all states q ∈ Q and a ∈ Σ is a symbol, w ∈ Σ∗ is a word. A word w is said to be accepted by the automaton, if
δ∗(q0, w) ∈ F . The language L(A) accepted by a DFA A is the set of words accepted by A:

L(A) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}.

Each language accepted by some DFAs is a called a regular language. The right-language
−→
L (q) of a state q ∈ Q is defined as

the set of words accepted by an automaton started in q:
−→
L (q) = {w ∈ Σ∗ | δ∗(q, w) ∈ F}.

We denote by δ′(q) the set of outgoing transitions from state q:

δ′(q) = {⟨a, p⟩ | a ∈ Σ, p ∈ Q , δ(q, a) = p}.

The destination state of a transition t ∈ δ′(q) is denoted by tnext and the transition symbol by tsym. A typicalway to implement
the set of outgoing transitions is as an array of transitions. We use the term transition array in the following to refer to the
actual implementation of the set of outgoing transitions. Wewill assume that transition arrays are sorted by their transition
symbols. We define the signature−→q of a state q, to be q’s set of outgoing transitions unified with ε iff the state is final:

−→q =

δ′(q) ∪ {ε} if q ∈ F
δ′(q) else.

The signature of final states gets an additional {ε} element in the formula above. This element will be called the finality
attribute in the following text. In the latter we will often refer to the signature as being a sequence of finality attribute and
states rather than a set. A sequential signature holds the transitions ordered by the transition symbol, the finality attribute
being the first element if present.

A state q is called accessible if it is reachable from the start-state:

∃w ∈ Σ∗ | δ∗(q0, w) = q

and the state is said to be co-accessible if there is a path from q to a final state.

∃w ∈ Σ∗ | δ∗(q, w) ∈ F .

A DFA is connected iff each of its states is both accessible and co-accessible. We assume all automata to be connected in the
following text. A DFA is acyclic if there is no state which can reach itself over a non-empty chain of transitions:

∀q ∈ Q , ∀w ∈ Σ+ : δ∗(q, w) = p→ q ≠ p.

Otherwise the DFA is cyclic.
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