
Discrete Applied Mathematics 163 (2014) 258–267

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

New simple efficient algorithms computing powers and runs
in strings
M. Crochemore a,c, C.S. Iliopoulos a,d, M. Kubica e, J. Radoszewski e,∗,1,
W. Rytter e,f, K. Stencel e,f, T. Waleń b,e

a King’s College London, London WC2R 2LS, UK
b Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4,
02-109 Warsaw, Poland
c Université Paris-Est, France
d Digital Ecosystems & Business Intelligence Institute, Curtin University of Technology, Perth WA 6845, Australia
e Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
f Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

a r t i c l e i n f o

Article history:
Received 10 December 2011
Received in revised form 17 February 2013
Accepted 20 May 2013
Available online 14 June 2013

Keywords:
Run in a string
Square in a string
Cube in a string
Dictionary of Basic Factors

a b s t r a c t

Three new simple O(n log n) time algorithms related to repeating factors are presented
in the paper. The first two algorithms employ only a basic textual data structure called
the Dictionary of Basic Factors. Despite their simplicity these algorithms not only detect
existence of powers (in particular, squares) in a string but also find all primitively rooted
cubes (as well as higher powers) and all cubic runs. Our third O(n log n) time algorithm
computes all runs and is probably the simplest known efficient algorithm for this problem.
It uses additionally the Longest Common Extension function, however, due to relaxed
running time constraints, a simple O(n log n) time implementation can be used. At the cost
of logarithmic factor (in time complexity) we obtain novel algorithmic solutions for several
classical string problems which are much simpler than (usually quite sophisticated) linear
time algorithms.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We present algorithms finding various types of repetitions in a string: powers (e.g., squares or cubes), cubic runs and
runs. The k-th power of a string u, uk, is simply composed of k juxtaposed occurrences of this string. The square and the
cube are obviously the second and the third power. A string u is called periodic with the period p if ui = ui+p holds for all
i. A run is a periodic factor of the string u in which the shortest period repeats at least twice. A run must be maximal, i.e., if
extend it by one symbol its period increases. A cubic run is similar, but is has to contain at least 3 occurrences of the period.
Finding powers and runs in a given string is a fundamental problem in text processing and has numerous applications: it
occurs frequently in pattern matching, text compression and computational biology. A more detailed explanation of the
motivation and related topics can be found in the survey [8].

Multiple algorithms for finding various kinds of repetitions in a string have already been presented. The largest part of
the related literature deals with different approaches to searching for squares in a string. Most of the existing algorithms

∗ Corresponding author. Tel.: +48 22 55 44 484; fax: +48 22 55 44 400.
E-mail addresses:maxime.crochemore@kcl.ac.uk (M. Crochemore), c.iliopoulos@kcl.ac.uk (C.S. Iliopoulos), kubica@mimuw.edu.pl (M. Kubica),

jrad@mimuw.edu.pl (J. Radoszewski), rytter@mimuw.edu.pl (W. Rytter), stencel@mimuw.edu.pl (K. Stencel), walen@mimuw.edu.pl (T. Waleń).
1 Some parts of this paper were written during the corresponding author’s Erasmus exchange at King’s College London.

0166-218X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.dam.2013.05.009

http://dx.doi.org/10.1016/j.dam.2013.05.009
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2013.05.009&domain=pdf
mailto:maxime.crochemore@kcl.ac.uk
mailto:c.iliopoulos@kcl.ac.uk
mailto:kubica@mimuw.edu.pl
mailto:jrad@mimuw.edu.pl
mailto:rytter@mimuw.edu.pl
mailto:stencel@mimuw.edu.pl
mailto:walen@mimuw.edu.pl
http://dx.doi.org/10.1016/j.dam.2013.05.009

M. Crochemore et al. / Discrete Applied Mathematics 163 (2014) 258–267 259

are rather complex. The first approach is to check if a string contains any square factor at all, or, otherwise, is square-free.
Denote by n the length of the considered string. O(n log n) time algorithms for square-free testing are presented in [24,25]
(the latter one is randomized). The optimal O(n) time algorithms are described in [5,24].

For the problem of finding all distinct squares, linear time algorithms are known [10,16,19]. It is also known that the
maximal number of distinct squares in a string is linear with respect to the length of the string: this number never exceeds
2n [15].

Another approach is to find all occurrences of primitively rooted squares in a string, that is, factors of the string in which
the shortest period occurs exactly twice. A number ofO(n log n) time algorithms reporting all such occurrences can be found
in [2,4,20,23,26].

Due to the lower bound shown in [6] these algorithms are optimal.
Yet another approach is to report simply all occurrences of squares in a string. Denote the number of such occurrences

by z, note that z could be Θ(n2). Both O(n log n + z) time algorithms [21,23,26] and O(n + z) time algorithms [16,19] are
known for this problem.

Finally, there are recent results related to on-line square detection (that is, when the symbols of the string are given one
by one), improving the time complexity from O(n log2 n) [22] to O(n log n) [18] and O(n) [3].

Let u be a string of length n over a bounded alphabet. In Section 3 a very simple O(n log n) time algorithm checking
whether u contains any k-th string power is presented. The algorithm utilizes a simple, yet powerful textual data structure
called the Dictionary of Basic Factors. The algorithm also reports all occurrences of primitively rooted k-th powers for any
k ≥ 3, in particular, primitively rooted cubes. As a by-product we obtain an alternative, algorithmic proof of the fact [6] that
the maximal number of such occurrences in a string of length n is O(n log n).

From the aforementioned literature, the papers [2,4,23] deal also with powers of arbitrary (integer) exponent, however
the techniques used there (e.g., suffix trees, Hopcroft’s factor partitioning) aremuchmore sophisticated than the techniques
applied in this paper. The O(n log n) time algorithm for a single square detection from [24] is in some sense similar to
the algorithm presented in this paper. However, it is less versatile than ours. We see no simple modification adapting the
algorithm from [24] to detect all occurrences of primitively rooted higher powers.

In Section 4 we present an application of our power-detecting algorithm to find all cubic runs in a string. This algorithm
also works in O(n log n) time and it does not use any additional advanced techniques.

Finally, in Section 5we give an algorithm reporting all runs in a string inO(n log n) time. It is significantly simpler than all
knownO(n log n) time algorithms present implicitly in [2,4,23] and than the optimalO(n) time algorithm [19]. The only non-
trivial technique used in our algorithm is the Longest Common Extension function. It can be either implemented as described
in [12,17] – very efficiently, but using quite sophisticated machinery – or in a much simpler way, using the Dictionary of
Basic Factors, which is sufficient to obtain O(n log n) time complexity.

This paper is a full version of the paper [9].

2. Preliminaries

We consider strings (words) over a bounded alphabet Σ . The empty string is denoted by ε. The positions in u are
numbered from 1 to |u|. For u = u1u2 . . . un, by u[i..j] we denote a factor of u equal to ui . . . uj (in particular u[i] = u[i..i]).
Strings u[1..i] are called prefixes of u, strings u[i..n] are called suffixes of u, whereas strings that are both a prefix and a suffix
of u are called borders of u.

We say that a positive integer p is a period of the string u = u1 . . . un if ui = ui+p holds for all i, 1 ≤ i ≤ n − p. Periods
and borders correspond to each other, i.e., u has a period p if and only if it has a border of length n− p; see, e.g., [7,14].

Let us consider positions between consecutive letters of u. We say that a square w2 is centered at inter-position between
ui and ui+1 if:

• w is a suffix of u[1..i] or u[1..i] is a suffix of w, and
• w is a prefix of u[i+ 1..n] or u[i+ 1..n] is a prefix of w.

The local period at inter-position between ui and ui+1 is the length of the shortest nonempty string centered at this inter-
position.

A run (also called a maximal repetition) in a string u is such an interval [i..j], that:

• the shortest period p of the associated factor u[i..j] satisfies 2p ≤ j− i+ 1,
• the interval can be extended neither to the left nor to the right, without violating the above property, that is, u[i− 1] ≠

u[i+ p− 1] and u[j− p+ 1] ≠ u[j+ 1], provided that the respective symbols exist.

We identify a run with a corresponding triple (i, j, p). j−1+1
p is called the exponent of a run (i, j, p). A cubic run is a run [i..j]

for which the shortest period p satisfies 3p ≤ j− i+ 1. Fig. 1 shows all the runs and cubic runs in a sample string.
If wk

= u, where u and w are nonempty strings and k is a positive integer, then we say that u is the k-th power of the
string w. A square (cube) is the 2nd (3rd) power of a string. A string v is called primitive if there is no string w and integer
k ≥ 2 such that v = wk. A k-th power wk is primitively rooted if w is primitive.

Download English Version:

https://daneshyari.com/en/article/419148

Download Persian Version:

https://daneshyari.com/article/419148

Daneshyari.com

https://daneshyari.com/en/article/419148
https://daneshyari.com/article/419148
https://daneshyari.com

