
Discrete Applied Mathematics 163 (2014) 287–297

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Algorithms for computing Abelian periods of words✩

Gabriele Fici a,∗, Thierry Lecroq b, Arnaud Lefebvre b, Élise Prieur-Gaston b

a Dipartimento di Matematica e Informatica, Università di Palermo, Italy
b Normandie Université, LITIS EA4108, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France

a r t i c l e i n f o

Article history:
Received 13 December 2011
Received in revised form 14 June 2013
Accepted 19 August 2013
Available online 24 September 2013

Keywords:
Abelian period
Abelian repetition
Weak repetition
Design of algorithms
Text algorithms
Combinatorics on words

a b s t r a c t

Constantinescu and Ilie [S. Constantinescu, L. Ilie. Fine and Wilf’s theorem for abelian
periods, Bulletin of the European Association for Theoretical Computer Science 89 (2006)
167–170] introduced the notion of an Abelian period of a word. A word of length n over
an alphabet of size σ can have Θ(n2) distinct Abelian periods. The Brute-Force algorithm
computes all the Abelian periods of a word in time O(n2

× σ) using O(n × σ) space.
We present an offline algorithm based on a select function having the same worst-case
theoretical complexity as the Brute-Force one, but outperforming it in practice. We then
present online algorithms that also enable us to compute all the Abelian periods of all the
prefixes of w.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

An integer p > 0 is a (classical) period of a word w of length n if w[i] = w[i + p] for every 1 6 i 6 n − p. Classical
periods have been extensively studied in Combinatorics onWords [13] due to their direct applications in data compression
and pattern matching.

The Parikh vector of a word w enumerates the cardinality of each letter of the alphabet in w. For example, given the
alphabetΣ = {a, b, c}, the Parikh vector of thewordw = aaba is (3, 1, 0). The reader can refer to [3] for a list of applications
of Parikh vectors.

An integer p is an Abelian period of a word w over a finite alphabet Σ = {a1, a2, . . . , aσ } if w can be written as w =

u0u1 · · · uk−1uk where for 0 < i < k all the ui’s have the same Parikh vector P such that
σ

i=1 P [i] = p and the Parikh
vectors of u0 and uk are contained in P [6]. For example, the word w = ababbbabb can be written as w = u0u1u2u3, with
u0 = a, u1 = bab, u2 = bba and u3 = bb, and 3 is an Abelian period of w.

This definition of Abelian period matches the one of weak repetition (also called Abelian power) when u0 and uk are the
empty word and k > 2 [7].

In recent years, several efficient algorithms have been designed for an Abelian version of the classical pattern matching
problem, called the Jumbled PatternMatching problem [5,2,3,14,4,15,1,11], defined as the problem of finding the occurrences
of a substring in a text up to a permutation of the letters in the substring, i.e., the occurrences of any substring of the text
having the same Parikh vector as the pattern. However, apart from the greedy offline algorithm given in [7], no efficient
algorithms are known for computing all the Abelian periods of a given word.1

✩ Some of the results in this paper were presented at Prague Stringology Conference 2011 (Fici et al. (2011) [9]).
∗ Corresponding author. Tel.: +39 09123891111; fax: +39 091 23891024.

E-mail addresses: Gabriele.Fici@unipa.it (G. Fici), Thierry.Lecroq@univ-rouen.fr (T. Lecroq), Arnaud.Lefebvre@univ-rouen.fr (A. Lefebvre),
Elise.Prieur@univ-rouen.fr (É. Prieur-Gaston).
1 During the publication process of the present article, some papers dealing with the computation of the Abelian periods of a word have been

published [10,12].

0166-218X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.dam.2013.08.021

http://dx.doi.org/10.1016/j.dam.2013.08.021
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2013.08.021&domain=pdf
mailto:Gabriele.Fici@unipa.it
mailto:Thierry.Lecroq@univ-rouen.fr
mailto:Arnaud.Lefebvre@univ-rouen.fr
mailto:Elise.Prieur@univ-rouen.fr
http://dx.doi.org/10.1016/j.dam.2013.08.021

288 G. Fici et al. / Discrete Applied Mathematics 163 (2014) 287–297

Fig. 1. Brute-Force algorithm for computing all the Abelian periods of a word w of length n.

In this article, we present several offline and online algorithms for computing all the Abelian periods of a given word. In
Section 2 we give some basic definitions and fix the notation. Section 3 presents offline algorithms, while Section 4 presents
online algorithms. In Section 5we give some experimental results on execution times. Finally, Section 6 contains conclusions
and perspectives.

2. Definitions and notation

Let Σ = {a1, a2, . . . , aσ } be a finite ordered alphabet of cardinality σ and Σ∗ the set of words over Σ . We set ind(ai) = i
for 1 6 i 6 σ . We denote by |w| the length of w. We write w[i] the i-th symbol of w and w[i..j] the factor of w from the i-th
symbol to the j-th symbol included, with 1 6 i 6 j 6 |w|. We denote by |w|a the number of occurrences of the letter a ∈ Σ

in the word w.
The Parikh vector of a word w, denoted by Pw , counts the occurrences of each letter of Σ in w, i.e., Pw = (|w|a1 , . . . ,

|w|aσ). Notice that two words have the same Parikh vector if and only if one is obtained from the other by permuting letters
(in otherwords, one is an anagram of the other).We denote byPw(i,m) the Parikh vector of the factor of lengthm beginning
at position i in the word w.

Given the Parikh vector Pw of a word w, we denote by Pw[i] its i-th component and by |Pw| its norm, that is the sum of
its components. Thus, for w ∈ Σ∗ and 1 6 i 6 σ , we have Pw[i] = |w|ai and |Pw| =

σ
i=1 Pw[i] = |w|. Finally, given two

Parikh vectors P , Q, we write P ⊂ Q if P [i] 6 Q[i] for every 1 6 i 6 σ and |P | < |Q|.

Definition 1 ([6]). A word w has an Abelian period (h, p) if w = u0u1 · · · uk−1uk such that:

• Pu0 ⊂ Pu1 = · · · = Puk−1 ⊃ Puk ,
• |Pu0 | = h, |Pu1 | = p.

We call u0 and uk resp. the head and the tail of the Abelian period. Notice that the length t = |uk| of the tail is uniquely
determined by h, p and |w|, namely t = (|w| − h) mod p.

The following lemma gives an upper bound on the number of Abelian periods of a word.

Lemma 2.1. A word of length n over an alphabet Σ of cardinality σ can have Θ(n2) different Abelian periods.

Proof. The word w = (a1a2 · · · aσ)n/σ has Abelian period (h, p) for any p ≡ 0 mod σ and every h such that 0 6 h 6
min(p − 1, n − p). Therefore, w has Θ(n2) different Abelian periods. �

A natural order can be defined on the Abelian periods of a word.

Definition 2. Two distinct Abelian periods (h, p) and (h′, p′) of a word w are ordered as follows: (h, p) < (h′, p′) if p <
p′ or (p = p′ and h < h′).

We are interested in computing all the Abelian periods of a word. However, the algorithms we present in this paper can
be easily adapted to give the smallest Abelian period only.

3. Offline algorithms

3.1. Brute-Force algorithm

In Fig. 1, we present a Brute-Force algorithm computing all the Abelian periods of an input word w of length n. For each
possible head of length h from 1 to ⌊(n−1)/2⌋ the algorithm tests all the possible values of p such that p > h and h+p 6 n.
It is a reformulation of the algorithm given in [7].

Example 1. Forw = abaababa the algorithm outputs (1, 2), (0, 3), (2, 3), (1, 4), (2, 4), (3, 4), (0, 5), (1, 5), (2, 5), (3, 5),
(0, 6), (1, 6), (2, 6), (0, 7), (1, 7) and (0, 8). Among these periods, (1, 2) is the smallest.

Theorem 3.1. The algorithm AbelianPeriod-BruteForce computes all the Abelian periods of a given word of length n in time
O(n2

× σ) with O(n × σ) space.

Download English Version:

https://daneshyari.com/en/article/419151

Download Persian Version:

https://daneshyari.com/article/419151

Daneshyari.com

https://daneshyari.com/en/article/419151
https://daneshyari.com/article/419151
https://daneshyari.com

