
Discrete Applied Mathematics 163 (2014) 352–360

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

String matching with lookahead✩

Hannu Peltola ∗, Jorma Tarhio
Department of Computer Science and Engineering, Aalto University, P.O. Box 15400, FI-00076 Aalto, Finland

a r t i c l e i n f o

Article history:
Received 11 December 2011
Received in revised form 23 October 2013
Accepted 28 October 2013
Available online 16 November 2013

Keywords:
String matching
Bit-parallelism
BNDM
2-byte read
q-grams

a b s t r a c t

Forward-SBNDM is a recently introduced variation of the BNDM algorithm for exact string
matching. Forward-SBNDM inspects a 2-gram in the text such that the first character is the
last one of an alignment window of the pattern and the second one is then outside thewin-
dow. We present a generalization of this idea by inspecting several lookahead characters
beyond an alignment window and integrate it with SBNDMq, a q-gram variation of BNDM.
As a result, we get several new variations of SBNDMq. In addition, we introduce a greedy
skip loop for SBNDM2. We tune up our algorithms and the reference algorithms with
2-byte read. According to our experiments, the best of the new variations are faster than
the winners of recent algorithm comparisons for English, DNA, and binary data.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

After the advent of the Shift-Or [2] algorithm, bit-parallel string matching methods have gained more andmore interest.
The BNDM (Backward Nondeterministic DAWGMatching) algorithm [20] is a nice example of an elegant, compact, and effi-
cient piece of code for exact string matching. BNDM simulates the nondeterministic finite automaton of the reverse pattern
even without constructing the actual automaton.

SBNDM2 [6,11] is a simplified variation of BNDM. SBNDM2 starts processing of an alignment window of the pattern
by reading two characters. Recently Faro and Lecroq [8] introduced Forward-SBNDM, a lookahead version of the SBNDM2
algorithm. Forward-SBNDM inspects a 2-gram (a string of two characters) where the latter text character follows an align-
ment window of the pattern. In this paper, we present a generalization of the lookahead idea and give new variations of
SBNDMq [6], which is a q-gram extension of SBNDM2. In addition, we introduce a greedy skip loop for SBNDM2. Our point
of view is the practical efficiency of exact string matching algorithms. According to our experiments, the best of the new
variations are clearly faster than the winners of recent algorithm comparisons [6,9] for English, DNA, and binary data.

We use the following notations. Let a pattern P = p1p2 . . . pm and a text T = t1t2 . . . tn be two strings over a finite alpha-
bet Σ . The task of exact string matching is to find all occurrences of P in T . Formally we search for all positions k such that
tktk+1 . . . tk+m−1 = p1p2 . . . pm. In the pseudocode of the algorithms we use the following notations of the programming
language C: ‘|’, ‘&’, ‘∼’, ‘<<’, and ‘>>’ represent bitwise operations or, and, one’s complement, left shift, and right shift,
respectively. The register width (or word size informally speaking) of a processor is denoted by w.

The rest of the paper is organized as follows. Since ourwork is based on SBNDMq and Forward-SBNDM,we start with pre-
senting these algorithms in Section 2. In Section 3we generalize Forward-SBNDMwithwider lookahead and longer q-grams.
In Section 4 the greedy skip loop is presented. Section 5 reviews the results of our experiments before concluding remarks
in Section 6.

✩ Supported by the Academy of Finland (grant 134287).
∗ Corresponding author.

E-mail addresses: hpeltola@cs.hut.fi, hannu.peltola@aalto.fi (H. Peltola), jorma.tarhio@aalto.fi (J. Tarhio).

0166-218X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.dam.2013.10.034

http://dx.doi.org/10.1016/j.dam.2013.10.034
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2013.10.034&domain=pdf
mailto:hpeltola@cs.hut.fi
mailto:hannu.peltola@aalto.fi
mailto:jorma.tarhio@aalto.fi
http://dx.doi.org/10.1016/j.dam.2013.10.034


H. Peltola, J. Tarhio / Discrete Applied Mathematics 163 (2014) 352–360 353

2. Previous algorithms

2.1. BNDM, SBNDM, and SBNDMq

In BNDM [20] the precomputed table B associates each character with a bit mask called an occurrence vector expressing
its locations in the pattern. In each alignment window of the pattern, the algorithm reads the text from right to left until the
whole pattern is recognized or the processed text string is not any factor (i.e. a substring) of the pattern. Between alignments,
the algorithm shifts the pattern forward to the start position of the longest found prefix of the pattern, or if no prefix is
found, over the current alignment window.With the bit-parallel shift-and technique, the algorithmmaintains a state vector
D, which has one in each position where the currently processed substring is a factor of the pattern. SBNDM [19,21] is
a simplified version of BNDM. SBNDM does not explicitly care about prefixes, but shifts the pattern simply over the text
character which caused D to become zero when the alignment is not a match.

SBNDMq [6] is a variation of SBNDM applying q-grams. In each alignment window, SBNDMq first processes q text char-
acters ti, . . . , ti+q−1 before testing the state vector D. If D is zero, this q-gram is not a factor of P , and then the pattern can be
shifted forwardm−q+1 positions. IfD is not zero, a single character at a time is read to the left untilD becomes zero, which
means that the suffix of the alignment window is no more a factor of P , or an occurrence of the pattern has been found. The
pseudocode of SBNDMq is shown as Algorithm 1. F(i, q) on line 6 is a shorthand notation for the expression

B[ti]&(B[ti+1] << 1)& · · ·&(B[ti+q−1] << (q− 1)).

Algorithm 1 SBNDMq (P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: 1 ≤ q ≤ m ≤ w

/* Preprocessing */
1: for all c ∈ Σ do B[c] ← 0
2: for j← 1 to m do
3: B[pj] ← B[pj] | (1 << (m− j))

/* Searching */
4: i← m− q+ 1
5: while i ≤ n− q+ 1 do
6: D← F(i, q)
7: if D ≠ 0 then
8: j← i− (m− q+ 1)
9: repeat

10: i← i− 1
11: D← (D << 1) & B[ti]
12: until D = 0
13: if j = i then
14: report occurrence at j+ 1
15: i← i+ s0
16: i← i+m− q+ 1

In the original BNDM, the inner loop also recognizes the prefixes of the pattern. The leftmost one of the found prefixes
determines the next alignment window of BNDM. Like SBNDM, SBNDMq does not care about prefixes, but shifts the pattern
over the text character which nullifies Dwhen the alignment is not a match.

When an occurrence of the pattern is found, the shift is s0, which corresponds to the distance to the leftmost prefix of the
pattern in itself and which is easily computed from the pattern (see [6]). We skip the details, because a conservative value
s0 = 1 works well in practice. In the subsequent algorithms of this paper, we use the value s0 = 1.

2.2. Forward-SBNDM

Forward-SBNDM, a lookahead version of SBNDM2, was introduced by Faro and Lecroq [8]. The idea of the algorithm is
the following. The occurrence vectors B are obtained from the occurrence vectors of SBNDM2 by shifting them one position
to the left and placing a set bit to the right end. As in SBNDM2, a 2-gram x1x2 is read before testing the state vector D. In
SBNDM2, x1x2 is matched with the end of the pattern. In Forward-SBNDM (FSB for short), only x1 is matched with the end
of the pattern, and x2 is a lookahead character following the current alignment window of the pattern. Note that B[x2] can
nullify several bits of D, and therefore x2 possibly enables longer shifts. The pseudocode of FSB is shown as Algorithm 2.

The basic shift of FSB is m positions, which is one more than in SBNDM2. Therefore FSB is faster than SBNDM2 for large
alphabets [9]. Because the length of the occurrence vector B of each character ism+ 1 in FSB, the upper limit for the pattern
length is thus w − 1.

In a way, FSB is a cross of SBNDM2 and Sunday’s QS [22]. QS was the first algorithm to use a lookahead character for
shifting. Another famous algorithm using two lookahead characters is by Berry and Ravindran [3].



Download	English	Version:

https://daneshyari.com/en/article/419158

Download	Persian	Version:

https://daneshyari.com/article/419158

Daneshyari.com

https://daneshyari.com/en/article/419158
https://daneshyari.com/article/419158
https://daneshyari.com/

