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a b s t r a c t

The standard Sturmian words (standard words in short) are extensively studied in combi-
natorics of words. They are complicated enough to have many interesting properties, and,
at the same time, due to their recurrent structure, they are highly compressible. In this
paper, we present compact formulas for the number of cubic runs in any standard word w
(denoted by ρ(3)(w)). We show also that

lim sup
|w|→∞

ρ(3)(w)

|w|
=

3Φ + 2
9Φ + 4

≈ 0.36924841,

where Φ =
√
5+1
2 is the golden ratio, and present a sequence of strictly growing standard

words achieving this limit. The exact asymptotic ratio here is irrational, contrary to the sit-
uation of squares and runs in the same class of words. Furthermore, we design an efficient
algorithm for computing the number of cubic runs in standard words in linear time with
respect to the size of a directive sequence, i.e., the compressed representation describing
the word (recurrences). The explicit size of a word can be exponential with respect to this
representation, and hence this is yet another example of a very fast computation on highly
compressible texts.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Repetitions in strings are important in combinatorics on words and in many practical applications; see for instance
[6,11,19,20]. The structure of repetitions is almost completely understood for the class of Fibonacci words (see [15,17,24]);
however, it is not well understood for general words.

We say that a number i is a period of the word w if w[j] = w[i+ j] for all j with i+ j ≤ |w|. The minimal period of w is
called the period of w, and is denoted by period(w). We say that a word w is periodic if period(w) ≤

|w|

2 . A word w is said to
be primitive if w is not of the form zk, where z is a finite word and k ≥ 2 is a natural number.

A repetition in a string w is a factor of the form uk
= u · u · . . . · u, where k ≥ 2. Such a repetition is maximal if |u|

is minimal possible and k is maximal possible. Some overlapping repetitions defined in that way are cyclic shifts of one
another. All such cyclic shifts could be represented by one factor ukv, where v is a (proper) prefix of u. Thus we allow the
exponent to a be rational number. In this work, we consider maximal repetitions as repetitions with a rational exponent.
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Fig. 1. The structure of repetitions in the word Sw(1, 2, 1, 3, 1). There are 19 runs and 4 cubic runs (marked in bold).

Formally, a maximal repetition (a run, in short) in a word w is an interval α = [i..j] such that w[i..j] = ukv (k ≥ 2) is
a nonempty periodic subword of w, where u is of the minimal length and v is a proper prefix (possibly empty) of u, that
cannot be extended (neither w[i− 1..j] nor w[i..j+ 1] is a run with period |u|). Cubic runs, introduced and studied in [10],
are defined in the same way, but we require that the period repeat at least three times (k ≥ 3).

A run α can be properly included as an interval in another run β , but in this case period(α) < period(β). The value of
the run α = [i . . . j] is the factor val(α) = w[i . . . j]. When it creates no ambiguity, we sometimes identify a run with its
value and the period of the run α = [i . . . j] with the subword w[i..period(w)]—called also the generator of the repetition.
The meaning will be clear from the context. Observe that two different runs could correspond to identical subwords, if we
disregard their positions. Hence runs are also called the maximal positioned repetitions.

Example 1. Let w = ababaabababaabababaabababaababaab.
There are 5 runs with period |a|:

w[5..6] = a2, w[12..13] = a2, w[19..20] = a2,
w[26..27] = a2, w[31..32] = a2,

5 runs with period |ab| (including 3 cubic runs):

w[1..5] = (ab)2a, w[6..12] = (ab)3a, w[13..19] = (ab)3a,
w[20..26] = (ab)3a, w[27..31] = (ab)2a,

4 runs with period |aba|:

w[3..8] = (aba)2, w[10..15] = (aba)2,
w[17..22] = (aba)2, w[24..29] = (aba)2,

4 runs with period |ababa|:

w[1..10] = (ababa)2, w[8..17] = (ababa)2,
w[15..24] = (ababa)2, w[22..33] = (ababa)2ab,

and 1 (cubic) run with the period |ababaab| : w[1..31] = (ababaab)4aba. All together we have 19 runs and 4 cubic runs; see
Fig. 1 for comparison.

Denote by ρ(w) and ρ(3)(w) the number of runs and cubic runs in the word w, and by ρ(n) and ρ(3)(n) the maximal
number of runs and cubic runs in the words of length n, respectively. The most interesting and open conjecture about
maximal repetitions is that

ρ(n) < n.

In 1999, Kolpakov and Kucherov (see [16]) showed that the number of runs in a string w is O

|w|


, but the exact

multiplicative constant coefficient is still unknown. The best known results related to the value of ρ(n) are

0.944575712n ≤ ρ(n) ≤ 1.029n.

The upper bound is by [8,9] and the lower bound is by [13,14,18,27]. The best known results related to ρ(3)(n) are (due
to [10])

0.41n ≤ ρ(3)(n) ≤ 0.5n.
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