
Computer Languages, Systems & Structures 36 (2010) 123 -- 141

Contents lists available at ScienceDirect

Computer Languages, Systems & Structures

journal homepage: www.e lsev ier .com/ locate /c l

Extending object-oriented languages with backward error recovery
integrated support

Daniel Fernández Lanvin∗, Raúl Izquierdo Castanedo, Aquilino Adolfo Juan Fuente,
Alberto Manuel Fernández Álvarez

University of Oviedo, Dept. Informática, Oviedo 33007, Spain

A R T I C L E I N F O A B S T R A C T

Article history:
Received 26 June 2008
Received in revised form
16 March 2009
Accepted 16 May 2009

Keywords:
Recoverability
Object-oriented
Error recovery
Reconstructor
Software robustness

One of the requirements of software robustness is controlling and managing runtime errors
that might arise at certain points of application execution. In most object-oriented program-
ming languages, this requirement is commonly implemented bymeans of exception handling.
Although exception handling is a powerful tool to avoid system failure arising, there are still
many situations where it is not sufficient to restore the system to a consistent state. Exception
handling allows the developer to detect and locate errors, but it gives no information or tools
to cover the error recovering task. Therefore, we propose an extension of the semantics of com-
mon object-oriented languages to restore the previous consistent state of the system in the
presence of runtime errors, avoiding some of the tasks that exception-handling mechanisms
delegate to developers. Our proposed solution is centered in the concept of “reconstructor”,
a declarative component oriented to automatically return the system to its last stable state.
Based on this concept, we develop a non-intrusive code enrichment tool for Java, and we ap-
ply it to a real application in order to check the feasibility of the proposal. We evaluated the
performance of the resulting code, obtaining reasonable and viable rates and overload.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Ever since the NATO conference on software development in 1968, this task was viewed as an engineering process, and conse-
quently a new objective emerged in every software project: every product needed to reach minimum levels of software quality.

Thirty years later, a great number of research lines are still devoted to obtaining new techniques and technologies to increase
software quality. This work considers a specific factor of software quality: software robustness.

Software robustness can be defined as the degree to which a system or component can function correctly in the presence of
invalid inputs or stressful environmental conditions [1,15]. It depends on two complementary factors: technological support and
the developer's professional capacities. The wider the technological coverage given by the platform, the easier the developer's
task of implementing robust software. The logic needed to implement recoverymechanisms in low-level languageswas therefore
more complicated and harder to maintain than the logic needed nowadays when developed with more mature technologies like
modern object-oriented platforms.

The current exception-handling mechanism, present in almost all object-oriented languages, covers the tasks of detection
and localization of the error source, but does not help to solve the third task that must be carried out to maintain consistency
in the presence of any critical error: error recovering. This task is delegated to the developer who, as it will be seen later in this

∗ Corresponding author. Tel.: +34985105094.
E-mail addresses: dflanvin@uniovi.es (D. Fernández Lanvin), raul@uniovi.es (R. Izquierdo Castanedo), aajuan@uniovi.es (A.A. Juan Fuente), alb@uniovi.es

(A.M. Fernández Álvarez).

1477-8424/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cl.2009.05.001

http://www.sciencedirect.com/science/journal/cl
http://www.elsevier.com/locate/cl
mailto:dflanvin@uniovi.es
mailto:raul@uniovi.es
mailto:aajuan@uniovi.es
mailto:alb@uniovi.es

124 D. Fernández Lanvin et al. / Computer Languages, Systems & Structures 36 (2010) 123 -- 141

document, sometimes does not have enough information to reach his/her objective without developing complementary support
processes.

In our opinion, some of these tasks can be implemented automatically by means of the information contained in the source
code, so it is possible to avoid some of the work a developer must do to implement the necessary mechanism for maintaining
consistency in the presence of errors. That is the motivation of this paper, which can be summarized thus:

The modern object-oriented languages can be extended with a new semantic layer that complements current exception-
handling mechanisms, simplifying the implementation of these processes purely oriented to consistency maintenance in
the presence of exceptional scenarios.

What we propose in this document is the implementation of a mechanism to make consistency restoration easier for the
developer. Since this is a very compressed expression of the idea, the next section justifies this work, starting from the analysis
of some of the scenarios where the current exception-handling mechanism does not cover all the requirements of consistency
maintenance, and describing the solution proposed as an extension of the modern object-oriented software development plat-
forms. This extension is based on the concept of the reconstructor, and it is integrated with modern object-oriented platforms as
a new semantic layer by the decoration of the source code.

2. Analyzing the problem: exception-handling limitations

As we said before, exception-handling is not always powerful enough to reach its objective: to return the system to a consistent
state and continue program execution, especially when the only way to recover the consistency is to recover the last consistent
state the system was in. It works right over the first two tasks of detecting and localizing the error source, but it does not cover
error recovering or correction. This task is usually delegated to the developer, who must implement the catch block to reach
the consistent state, but what should be coded inside? The presence of a catch block does not provide any warranty of model
consistency restoration. We know the type of error, and where it happened, but there is no information about how to restore the
system's consistency inside the catch block. Let us examine a set of common scenarios where recovery of the last consistent state
of the system becomes difficult if we are using only the exception-handling mechanism.

In Fig. 1, the developer does not know how to restore the previous state of the model, which of the operations inside the
block raised the exception and neither the changes produced in the model by the operations invoked before the failing one. Each
operation that can fire an exception can be isolated to avoid some of these problems, but with consequent code obfuscation.

Consider the code in Fig. 2. Even in this new scenario, where the error source is isolated, we still have several problems in
restoring the model. In this example, developers ignore the figures contained in the paint container which were rotated before
the exception was fired. A good design could solve the last example, but sometimes that is impossible without determining
application design.

In the example shown in Fig. 3, the developer knows what to restore, but s/he cannot do it. We could solve this problem by
implementing a new method to decrease the counter (counter.dec()), but we would be determining the final design on the basis
of something that is not an original requirement of the system. Finally, sometimes we know what we must restore, and we can
even restore it, but there is not enough information to do it, as in the example shown in Fig. 4.

Fig. 1. The exception-handling mechanism does not give any information on how to restore consistency.

Fig. 2. Operation isolation helps to localize the exception source.

Download	English	Version:

https://daneshyari.com/en/article/419173

Download	Persian	Version:

https://daneshyari.com/article/419173

Daneshyari.com

https://daneshyari.com/en/article/419173
https://daneshyari.com/article/419173
https://daneshyari.com/

