Clique cycle-transversals in distance-hereditary graphs*

Andreas Brandstädt ${ }^{\text {a }}$, Simone Esposito ${ }^{\text {b }}$, Loana T. Nogueira ${ }^{\text {b }}$, Fábio Protti ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Institut für Informatik, Universität Rostock, Germany
${ }^{\text {b }}$ Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil

ARTICLE INFO

Article history:

Received 28 November 2013
Received in revised form 18 October 2014
Accepted 5 December 2014
Available online 26 December 2014

Keywords:

Cycle transversal
Distance-hereditary graphs
Feedback vertex set
Clique cycle transversal
Forbidden induced subgraph
characterization

Abstract

A cycle transversal or feedback vertex set of a graph G is a subset $T \subseteq V(G)$ such that $T \cap V(C) \neq \emptyset$ for every cycle C of G. A clique cycle transversal, or cct for short, is a cycle transversal which is a clique. Recognizing graphs which admit a cct can be done in polynomial time; however, no structural characterization of such graphs is known. We characterize distance-hereditary graphs admitting a cct in terms of forbidden induced subgraphs. This extends similar results for chordal graphs and cographs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A cycle transversal or feedback vertex set of a graph G is a subset $T \subseteq V(G)$ such that $T \cap V(C) \neq \emptyset$ for every cycle C of G. When T is a clique, we say that T is a clique cycle transversal or simply $c c t$. A graph admits a cct if and only if it can be partitioned into a complete subgraph and a forest; by this reason such a graph is also called a ($\mathcal{C}, \mathcal{F})$-graph in [4].

Finding a minimum cycle transversal in a graph is NP-hard due to a general result in [16], which says that the problem of finding the minimum number of vertices of a graph G whose deletion results in a subgraph satisfying a hereditary property π on induced subgraphs is NP-hard. This result implies the NP-hardness of other problems involving cycle transversals, for instance the problem of finding a minimum odd cycle transversal (which is equivalent to finding a maximum induced bipartite subgraph), or the problem of finding a minimum triangle-transversal (which is equivalent to finding a maximum induced triangle-free subgraph). Odd cycle transversals are interesting due to their connections to perfect graph theory; in [15], an $O(\mathrm{mn})$ algorithm is developed to find odd cycle transversals with bounded size. In [12], the authors study the problem of finding C_{k}-transversals, for a fixed integer k, in graphs with bounded degree; among other results, they describe a polynomial-time algorithm for finding minimum C_{4}-transversals in graphs with maximum degree three.

Graphs admitting a cct can be recognized in polynomial time, as follows. Note first that (\mathcal{C}, \mathcal{F})-graphs form a subclass of $(2,1)$-graphs (graphs whose vertex set can be partitioned into two stable sets and one clique). The strategy for recognizing a (\mathcal{C}, \mathcal{F})-graph G initially checks whether G is a $(2,1)$-graph, which can be done in polynomial time (see $[2,3])$. If so, then test, for each candidate clique Q of a (2,1)-partition of G, if $G-Q$ is acyclic (which can be done in linear time). If the test fails for all cliques Q, then G is not a $(\mathcal{C}, \mathcal{F})$-graph, otherwise G is a $(\mathcal{C}, \mathcal{F})$-graph. To conclude the argument, we claim that the

[^0]number of candidate cliques Q is polynomial. Since G is a $(2,1)$-graph, let (B, Q) be a $(2,1)$-partition of $V(G)$ where B induces a bipartite subgraph and Q is a clique. Let (B^{\prime}, Q^{\prime}) be another (2, 1)-partition of $V(G)$. Then $\left|Q^{\prime} \backslash Q\right| \leq 2$ and $\left|Q \backslash Q^{\prime}\right| \leq 2$, otherwise $G[B]$ or $G\left[B^{\prime}\right]$ would contain a triangle, which is impossible. Therefore, we can generate in polynomial time all the other candidate cliques Q^{\prime} from Q. This is the same argument used to count sparse-dense partitions (for more details see [10]). Although recognizing graphs admitting a cct can be done in polynomial time, no structural characterization of such graphs is known, even for perfect graphs.

A similar sparse-dense partition argument can be employed to show that an interesting superclass of (\mathcal{C}, \mathcal{F})-graphs, namely graphs admitting a clique triangle-transversal, can also be recognized in polynomial time. Such graphs are also known in the literature as $(1,2)$-split graphs. A characterization of this class is given in [17], where it has been proved that there are 350 minimal forbidden induced subgraphs for $(1,2)$-split graphs. When G is a perfect graph, being a (1, 2)-split graph is equivalent to being a $(2,1)$-graph: note that a perfect graph G contains a clique triangle-transversal if and only if G contains a clique that intersects all of its odd cycles. In [7,13], respectively, characterizations by forbidden induced subgraphs of cographs and chordal graphs which are (1,2)-split graphs are presented.

Deciding whether a distance-hereditary graph admits a cct can be done in linear time using the clique-width approach, since the existence of a cct can be represented by a Monadic Second Order Logic (MSOL) formula using only predicates over vertex sets $[9,14]$. However, no structural characterization for distance-hereditary graphs admitting a cct was known. In order to fill this gap, in this note we describe a characterization of distance-hereditary graphs with cct in terms of forbidden induced subgraphs.

An extended abstract of this work recently appeared in [5].

2. Background

In this work, all graphs are finite, simple and undirected. Given a graph $G=(V(G), E(G))$, we denote by \bar{G} the complement of G. For $V^{\prime} \subseteq V(G), G\left[V^{\prime}\right]$ denotes the subgraph of G induced by V^{\prime}. Let $X=\left(V_{X}, E_{X}\right)$ and $Y=\left(V_{Y}, E_{Y}\right)$ be two graphs such that $V_{X} \cap V_{Y}=\emptyset$. The operations " + " and " \cup " are defined as follows: the disjoint union $X \cup Y$, sometimes referred simply as graph union, is the graph with vertex set $V_{X} \cup V_{Y}$ and edge set $E_{X} \cup E_{Y}$; the join $X+Y$ is the graph with vertex set $V_{X} \cup V_{Y}$ and edge set $E_{X} \cup E_{Y} \cup\left\{x y \mid x \in V_{X}, y \in V_{Y}\right\}$.

Let $N(x)=\{y \mid y \neq x$ and $x y \in E\}$ denote the open neighborhood of x and let $N[x]=\{x\} \cup N(x)$ denote the closed neighborhood of x. If $x y \in E$ ($x y \notin E$, respectively) we say that x sees y (x misses y, respectively). If for $U \subseteq V$ and $x \notin U$, there is an edge between x and a vertex of U, we say that x sees U. A cut-vertex is a vertex x such that $G[V \backslash\{x\}]$ hasmore connected components than G. A block (or 2-connected component) of G is a maximal induced subgraph of G having no cut-vertex. A block is nontrivial if it contains a cycle; otherwise it is trivial.

For a set \mathcal{F} of graphs, G is \mathcal{F}-free if no induced subgraph of G is in \mathcal{F}.
Vertices x and y are true twins (false twins, respectively) in G if $N[x]=N[y](N(x)=N(y)$, respectively).
Adding a true twin (false twin, pendant vertex, respectively) y to vertex x in graph G means that for G and $y \notin V(G)$, a new graph G^{\prime} is constructed with $V\left(G^{\prime}\right)=V(G) \cup\{y\}$ and $E\left(G^{\prime}\right)=E(G) \cup\{x y\} \cup\{u y \mid u \in N(x)\}\left(E\left(G^{\prime}\right)=E(G) \cup\{u y \mid u \in N(x)\}\right.$, $E\left(G^{\prime}\right)=E(G) \cup\{x y\}$, respectively)

The complete (respectively, edgeless) graph with n vertices is denoted by K_{n} (respectively, I_{n}). The graphs K_{1} and K_{3} are called trivial graph and triangle, respectively. The chordless cycle (chordless path, respectively) with n vertices is denoted by $C_{n}\left(P_{n}\right.$, respectively). The graph $C_{n}\left(\overline{C_{n}}\right.$, respectively) for $n \geq 5$ is a hole (anti-hole, respectively).

The house is the graph with vertices a, b, c, d, e and edges $a b, b c, c d, a d$, $a e, b e$. The gem is the graph with vertices a, b, c, d, e and edges $a b, b c, c d, a e, b e, c e, d e$. The domino is the graph with vertices a, b, c, d, e, h and edges $a b, b c, c d, a d$, be, eh, ch.

If H is an induced subgraph of G then we say that G contains H, otherwise G is H-free. A clique (resp. stable or independent set) is a subset of vertices inducing a complete (resp. edgeless) subgraph. A universal vertex is a vertex adjacent to all the other vertices of the graph. A split graph is a graph whose vertex set can be partitioned into a stable set and a clique. It is well known that G is a split graph if an only if G is $\left(2 K_{2}, C_{4}, C_{5}\right)$-free [11].

A star is a graph whose vertex set can be partitioned into a stable set and a universal vertex. A bipartite graph is a graph whose vertex set can be partitioned into two stable sets. A cograph is a graph containing no P_{4}. A chordal graph is a graph containing no C_{k}, for $k \geq 4$. A distance-hereditary graph is a graph in which the distances in any connected induced subgraph are the same as they are in the original graph.

A threshold graph is a graph that can be constructed from a one-vertex graph by repeated applications of the following two operations: (a) adding a single isolated vertex to the graph; (b) adding a single universal vertex to the graph. It is well known that G is a threshold graph if and only if G is $\left(2 K_{2}, C_{4}, P_{4}\right)$-free [8]. See [6] for many properties of such graph classes.

Let T be a subset of vertices of a graph G. If $T \cap V(C) \neq \emptyset$ for a cycle C of G, we say that T covers C.

3. The forbidden subgraph characterization

The following well-known characterization of distance-hereditary graphs, which are also called HHDG-free graphs, will be fundamental for our result:

https://daneshyari.com/en/article/419202

Download Persian Version:

https://daneshyari.com/article/419202

Daneshyari.com

[^0]: *) Partially supported by CNPQ and FAPERJ, Brazilian research agencies.

 * Corresponding author.

 E-mail addresses: andreas.brandstaedt@informatik.uni-rostock.de (A. Brandstädt), simone.esposito@light.com.br (S. Esposito), loana@ic.uff.br.br (L.T. Nogueira), fabio@ic.uff.br (F. Protti).
 http://dx.doi.org/10.1016/j.dam.2014.12.007
 0166-218X/© 2014 Elsevier B.V. All rights reserved.

