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a b s t r a c t

A repetition-free Longest Common Subsequence (LCS) of two sequences x and y is an LCS of
x and ywhere each symbolmay appear atmost once. Let R denote the length of a repetition-
free LCS of two sequences of n symbols each one chosen randomly, uniformly, and
independently over a k-ary alphabet.We study the asymptotic, in n and k, behavior of R and
establish that there are three distinct regimes, depending on the relative speed of growth
of n and k. For each regime we establish the limiting behavior of R. In fact, we do more,
since we actually establish tail bounds for large deviations of R from its limiting behavior.

Our study is motivated by the so called exemplar model proposed by Sankoff (1999)
and the related similarity measure introduced by Adi et al. (2010). A natural question that
arises in this context, which as we show is related to long standing open problems in the
area of probabilistic combinatorics, is to understand the asymptotic, in n and k, behavior of
parameter R.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Several of the genome similarity measures considered in the literature either assume that the genomes do not contain
gene duplicates, or work efficiently only under this assumption. However, several known genomes do contain a significant
amount of duplicates. (See the review on gene and genome duplication by Sankoff [19] for specific information and
references.) One can find in the literature proposals to address this issue. Some of these proposals suggest to filter the
genomes, throwing away part or all of the duplicates, and then applying the desired similarity measure to the filtered
genomes. (See [2] for a description of different similarity measures and filtering models for addressing duplicates.)

Sankoff [18], trying to take into account gene duplication in genome rearrangement, proposed the so called exemplar
model, which is one of the filtering schemes mentioned above. In this model, one searches, for each family of duplicated
genes, an exemplar representative in each genome. Once the representative genes are selected, the other genes are disre-
garded, and the part of the genomes with only the representative genes is submitted to the similarity measure. In this case,
the filtered genomes do not contain duplicates, therefore several of the similarity measures (efficiently) apply. Of course,
the selection of the exemplar representative of each gene family might affect the result of the similarity measure. Following
the parsimony principle, one wishes to select the representatives in such a way that the resulting similarity is as good as
possible. Therefore, each similarity measure induces an optimization problem: how to select exemplar representatives of
each gene family that result in the best similarity according to that specific measure.
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The length of a Longest Common Subsequence (LCS) is a well-known measure of similarity between sequences. In
particular, in genomics, the length of an LCS is directly related to the so called edit distance between two sequences
when only insertions and deletions are allowed, but no substitution. This similarity measure can be computed efficiently
in the presence of duplicates (the classical dynamic programming solution to the LCS problem takes quadratic time,
however, improved algorithms are known, specially when additional complexity parameters are taken into account — for a
comprehensive comparison of well-known algorithms for the LCS problem, see [4]). Inspired by the exemplar model above,
some variants of the LCS similaritymeasure have been proposed in the literature. One of them, the so called exemplar LCS [6],
uses the concept of mandatory and optional symbols, and searches for an LCS containing all mandatory symbols. A second
one is the so called repetition-free LCS [1], that requires each symbol to appear at most once in the subsequence. Some other
extensions of these two measures were considered under the name of constrained LCS and doubly-constrained LCS [7]. All of
these variants were shown to be hard to compute [1,5–7], so some heuristics and approximation algorithms for them were
proposed and experimentally tested [1,6,14,10].

Specifically, the notion of repetition-free LCS was formalized by Adi et al. [1] as follows. They consider finite sets, called
alphabets, whose elements are referred to as symbols, and then they define the RFLCS problem as: Given two sequences
x and y, find a repetition-free LCS of x and y. We write RFLCS (x, y) to refer to the RFLCS problem for a generic instance
consisting of a pair (x, y), and we denote by Opt(RFLCS(x, y)) the length of an optimal solution of RFLCS (x, y). In their
paper, Adi et al. showed that RFLCS is MAX SNP-hard, proposed three approximation algorithms for RFLCS, and presented
an experimental evaluation of their proposed algorithms, using for the sake of comparison an exact (computationally
expensive) algorithm for RFLCS based on an integer linear programming formulation of the problem.

Whenever a problem such as the RFLCS is considered, a very natural question arises: What is the expected value of
Opt(RFLCS(x, y))? (where expectation is taken over the appropriate distribution over the instances (x, y) one is interested
in). It is often the case that one has little knowledge of the distribution of problem instances, exceptmaybe for the size of the
instances. Thus, an evenmore basic and often relevant issue is to determine the expected value taken byOpt(RFLCS(x, y)) for
uniformly distributed choices of x and y over all strings of a given length over some fixed size alphabet (say each sequence
has n symbols randomly, uniformly, and independently chosen over a k-ary alphabet Σ). Knowledge of such an average
case behavior is a first step in the understanding of whether a specific value of Opt(RFLCS(x, y)) is of relevance or could
be simply explained by random noise. The determination of this latter average case behavior in the asymptotic regime
(when the length n of the sequences x and y go to infinity) is the main problem we undertake in this article. Specifically, let
Rn = Rn(x, y) denote the length of a repetition-free LCS of two sequences x and y of n symbols randomly, uniformly, and
independently chosen over a k-ary alphabet. Note that the random variable Rn is simply the value of Opt(RFLCS(x, y)). We
are interested in determining (approximately) the value of E


Rn


as a function of n and k, for very large values of n.

One of the results established in this article is that the behavior of E

Rn


depends on theway inwhich n and k are related.

In fact, if k is fixed, it is easy to see thatE

Rn


tends to kwhen n goes to infinity (simply because any fix permutation of a k-ary

alphabet will appear in a sufficiently large sequence of uniformly and independently chosen symbols from the alphabet).
Thus, the interesting cases arise when k = k(n) tends to infinity with n. However, the speed at which k(n) goes to infinity
is of crucial relevance in the study of the behavior of E


Rn


. We identify three distinct growth regimes depending on the

asymptotic dependency between n and k
√
k. Specifically, we establish the next result1:

Theorem 1. The following holds:

• If n = ω(
√
k) and n = o(k

√
k), then limn→∞

E

Rn


n/

√
k(n)

= 2.

• If n =
1
2ρk

√
k for ρ > 0, then lim infn→∞

E

Rn


k(n) ≥ 1 − e−ρ . (By definition Rn ≤ k(n).)

Moreover, if n = ω(k
√
k), then limn→∞

E

Rn


k(n) = 1.

The main results of this article are obtained by relating the asymptotic average case behavior of E

Rn


with that of the

length Ln = Ln(x, y) of a Longest Common Subsequence (LCS) of two sequences x and y of n symbols chosen randomly,
uniformly, and independently over a k-ary alphabet. A simple (well-known) fact concerning Ln is that E


Ln


/n tends to a

constant, say γk, when n goes to infinity. The constant γk is known as the Chvátal–Sankoff constant. A long standing open
problem is to determine the exact value of γk for any fixed k ≥ 2. However, Kiwi, Loebl, and Matoušek [17] proved that
γk

√
k → 2 as k → ∞ (which positively settled a conjecture due to Sankoff and Mainville [20]).

We now give an informal and intuitive justification for each of the claims stated in Theorem 1. As pointed out above,
in [17], it was shown that, under some conditions on the speed of growth of k = k(n), the expected length of an LCS of
two length n sequences randomly, uniformly, and independently chosen over a k-ary alphabet, is roughly 2n/

√
k. When

n = ω(
√
k) ∩ o(k

√
k), we see that 2n/

√
k = ω(1) ∩ o(k). If the k-ary symbols that belong to an LCS show up more or

1 Adhering to standard notation, for functions f and g defined over the non-negative integers, g always non-zero, we say that f (n) = ω(g(n)) if
|f (n)|/|g(n)| tends to infinity when n → ∞.
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