
Discrete Applied Mathematics 210 (2016) 112–122

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

The cost of perfection for matchings in graphs✩

E.V. Brazil a, C.M.H. de Figueiredo b, G.D. da Fonseca c, D. Sasaki b,∗
a Department of Computer Science, University of Calgary, Canada
b COPPE, Universidade Federal do Rio de Janeiro, Brazil
c LIRMM, Université Montpellier 2, France

a r t i c l e i n f o

Article history:
Received 27 December 2013
Received in revised form 3 December 2014
Accepted 5 December 2014
Available online 31 December 2014

Keywords:
Triangle meshes
Perfect matchings
Cubic graphs
Regular bipartite graphs

a b s t r a c t

Perfect matchings and maximum weight matchings are two fundamental combinatorial
structures. We consider the ratio between the maximumweight of a perfect matching and
the maximumweight of a general matching. Motivated by the computer graphics applica-
tion in triangle meshes, where we seek to convert a triangulation into a quadrangulation
by merging pairs of adjacent triangles, we focus mainly on bridgeless cubic graphs.

First, we characterize graphs that attain the extreme ratios. Second, we present a lower
bound for all bridgeless cubic graphs. Third, we present upper bounds for subclasses of
bridgeless cubic graphs, most of which are shown to be tight. Additionally, we present tight
bounds for the class of regular bipartite graphs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The study of matchings in cubic graphs has a long history in combinatorics, dating back to Petersen’s theorem [20]. Re-
cently, the problem has found several applications in computer graphics and geographic information systems [5,18,24,10].
Before presenting the contributions of this paper, we consider the following motivating example in the area of computer
graphics.

Triangle meshes are often used to model solid objects. Nevertheless, quadrangulations are more appropriate than trian-
gulations for some applications [10,23]. In such situations, we can convert a triangulation into a quadrangulation bymerging
pairs of adjacent triangles (Fig. 1). Hence, the problem can bemodeled as a matching problem by considering the dual graph
of the triangulation, where each triangle corresponds to a vertex and edges exist between adjacent triangles. The dual graph
of a triangle mesh is a bridgeless cubic graph, for which Petersen’s theorem guarantees that a perfect matching always
exists [5,7]. Also, such a matching can be computed in O(n log2 n) time [12].

Unfortunately, from the computer graphics perspective, some pairs of triangles lead to undesirable quadrilaterals (for
example, when the triangles are skinny or lie on very different planes). A natural extension to the cubic graphmodel assigns
aweight to each edge (i.e., to each pair of adjacent triangles), which expresses howdesirable the corresponding quadrilateral
is. In Fig. 1 (middle and right) we can compare the results when two different weight functions are used to create
quadrangular meshes, observe that the middle one has more skinny quadrilaterals than the right one. However, even when
using good weight functions, an inherent difficulty arises: The maximum weight matching may not be a perfect matching.
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Fig. 1. Stanford Bunny Model: triangular mesh (left) and two quadrangular meshes.

In this paper, we study the relationship between these two types of matchings, in order to understand howmuch worse
(in terms of total weight) we do by selecting the maximum weight perfect matching instead of the maximum weight
matching. The interest of such study goes beyond the original computer graphics application, raising intriguing theoretical
questions.

We provide bounds for the ratio between the maximum weight of a perfect matching and the maximum weight of a
matching. We take advantage of the existing rich literature about bridgeless cubic graphs, a historical graph class much
studied in the context of important graph theory conjectures, such as: The Four Color Conjecture [2], the Berge–Fulkerson
Conjecture, and the Cycle Double Cover Conjecture [9]. We formalize the aforementioned concepts in the next paragraphs,
after some definitions.

Let G = (V , E) be a connected undirected graph. A bridge is an edge uv ∈ E such that all paths between u and v go
through uv. A graph is bridgeless if it has no bridges. A graph is ∆-regular if every vertex has degree exactly ∆. A 3-regular
graph is called a cubic graph. A cubic graph is bridgeless if and only if it is biconnected [7].

A matching in G is a set M ⊆ E such that no two edges in M share a common vertex. Recall that given a matching M
in a graph G, we say that M saturates a vertex v and that vertex v is M-saturated, if some edge of M is incident to v [7]. A
matching P is perfect if |P| = |V |/2. Amatching ismaximal if it is not a subset of any other matching and ismaximum if it has
maximum cardinality. A cubic graph G is Tait-colorable if the edges of G can be partitioned into three perfect matchings, all
Tait-colorable graphs are bridgeless [7]. A snark is a bridgeless cubic graph that is not Tait-colorable and the smallest snark
is the Petersen graph [19].

Let w : E → R+ be the weight of the edges. It will be convenient to allow for the weight of some edges to be zero as
long as there is at least one edge with nonzero weight. Given a subset E ′

⊆ E, we refer to the quantity w(E ′) =


e∈E′ w(e)
as the weight of E ′. Amaximum weight matching is a matchingM∗(G) of maximum possible weight in G. Amaximum weight
perfect matching is a perfect matching P∗(G) of maximum possible weight (among all perfect matchings of G). Given a graph
Gwhich admits a perfect matching, we define

η(G) = min
w:E→R+

w(P∗(G))

w(M∗(G))
.

The value of η(G) can be as small as 0. To see that, consider the path of length 3 where the middle edge has weight 1 and
the two remaining edges have weight 0. The graph G has a single perfect matching P with weight w(P) = 0, while there is a
non-perfect matching with weight 1. Note that we allow edge weights to be 0, for otherwise, η(G) could be made arbitrarily
small as the weights approach 0, and the minimum would never be attained. By allowing edge weights to be 0, we show
that the minimum is always attained (Theorem 1).

A graph G with η(G) = 0 represents one extreme of the problem. In this case, requiring a matching to be perfect may
result in a matching with zero weight, where a matching with arbitrarily high weight may exist. In the other extreme, we
have graphs G with η(G) = 1. In this case, for every w there is a perfect matching with the same weight as the maximum
weight matching. In Section 2, we give precise characterizations of these two extremes. In the remainder of the paper, we
manage to determine the exact value of η for several graphs that lie in between the two extreme cases. Some examples are
presented in Fig. 2.

Consider a graph G that is known to be a member of a graph class G. Since η(G) is only defined for graphs that admit a
perfectmatching,we assume that all graphs inG admit perfectmatchings. Different graphsG,G′

∈ Gmayhaveη(G) ≠ η(G′).
We define the value of η(G) for a graph class G as:

η(G) = inf
G∈G

η(G).

Sometimes, when the graph G or the graph class G is clear from the context, we refer to η(G) or η(G) simply as η.
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