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a b s t r a c t

An effective way to analyze and apprehend the structural properties of networks is to find
theirmost critical nodes. Thismakes them easier to control, whether the purpose is to keep
or to delete them. Given a graph, Critical Node Detection problem (CNDP) consists in finding
a set of nodes, deletion of which satisfies some given connectivity metrics in the induced
graph. In this paper,we propose and study a newvariant of this problem, called Component-
Cardinality-Constrained Critical Node Problem (3C-CNP). In this variant, we seek to find a
minimal set of nodes, removal ofwhich constrains the size of each connected component in
the induced graph to a given bound. We prove the NP-hardness of this problem on a graph
of maximum degree∆ = 4, throughwhichwe deduce the NP-hardness of CNP (Arulselvan
et al., 2009) on the same class of graphs. Also, we study 3C-CNP on trees for different cases
depending on node weights and connection costs. For the case where node weights and
connection costs have non-negative values, we prove its NP-completeness. While, for the
case where node weights (or connection costs) have unit values, we present a polynomial
algorithm. Also, we study 3C-CNP on chordal graphs, wherewe show that it is NP-complete
on split graphs, and polynomially solvable on proper interval graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Context and definitions

1.1. Theoretical definitions

All graphs considered in this paper are finite. For a graph G = (V , E), we use V and E to denote, respectively, the vertex
set and the edge set. Let A ⊆ V be a subset of V . We use G[A] = (A, E(A)), where E(A) = {(u, v) ∈ E|u, v ∈ A}, to denote
the subgraph of G induced by A. The subgraph induced by V \ A is denoted G[V \ A]. If G is a directed graph, the edge (u, v)
is an arc directed from u to v.

A path in G is a sequence of nodes (v1, v2, . . . , vk) such that each pair (vi, vi+1) is an edge in E. Two nodes are connected
if there is a path between them. For each pair (u, v) ∈ V × V , the pairwise connectivity p(u, v) is defined as follows:

p(u, v) =


1, if u and v are connected,
0, otherwise.
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Given a connected component h, we denote σh the cardinality of h. Also, we use f (h) to denote the pairwise connectivity
of h, f (h) = σh(σh−1)

2 .
A general non-negative weight (resp. cost) may be associated with each node v ∈ V (resp. edge (u, v) ∈ E).

For undefined terms, we refer the reader to [10].

1.2. 3C-CNP definition

In networks, nodes have varying degrees of importance. For many years now, the goal has been to find which are the
most important for the network. In the literature, the most important nodes have appeared under different names, and
for various purposes according to the problem at hand, such as: most influential nodes [22], most vital nodes [13], most
k-mediator nodes [25], key-player nodes [11], etc. Recently, research has focused particularly on finding the most critical
nodes in networks. A node is critical if its failure or malicious behavior significantly degrades the network performances.
Once identified, the critical node can be the focus of defensive monitoring for a positive fit, or of offensive attempts for a
negative one.

Given a graph, Critical Node Detection problem (CNDP) consists in finding a set of nodes, deletion of which results in
a connectivity disruption in the induced graph. The level of disconnectivity in the induced graph is modeled as a metric
to satisfy once the nodes have been deleted. In the literature, many connectivity metrics have been considered, including:
maximize the number of connected components [29,30], reduce overall pairwise connectivity to some certain value [15],
generate the maximum number of components with minimum difference on their cardinality [4,32], bound the largest
component size to a given threshold [29], maximize (resp. minimize) the number of small (resp. large) components [31].

Identification of the most critical nodes has many applications in a number of fields, including network risk manage-
ment [5], network vulnerability assessment [15,28], social network analysis [18,24], biological molecule studies [9,33], net-
work immunization [4,23] and network communication [12,3].

The theoretical formulation for studying the combinatorial aspect of CNDP was first defined byArulselvan et al. (2009) [4].
This definition was derived from the study explored by Borgatti (2006) [11], where he studied the key-players in networks
using the pairwise connectivity metric. Arulselvan et al. presented two variants of the CNDP, namely CNP [4] and CC-
CNP [6]. They proved their complexity on general graphs. Also, they derived mathematical formulations, and presented
some heuristic algorithms for solving them in general graphs.

Since then, many studies and variants have been presented depending on the connectivity metric to be checked in the
induced graph. Among recent works on this subject, we can cite the work of Di Summa et al. (2011) [32], in which they
studied the CNP variant on trees taking into account the case of nonnegative weight for nodes and cost for connections.
Also, Addis et al. (2013) [31] considered CNP on special classes of graphs, namely split graphs, bipartite graphs, complement
bipartite graphs and graphs of bounded treewidth. Shen et al. [29,30] examined two new variants of CNDP, namelyMaxNum
and MinMaxC, which aim, respectively, to maximize the number of connected component, and minimize the size of the
maximal component, in the induced graph. They studied both variants on trees, series parallel graphs and k-hole graphs.
In [15,14], Dinh et al. presented a new formulation of CNP, called β-vertex separator problem. They studied its complexity
and inapproximability on general graphs, and proposed a pseudo-approximation algorithm, as well as a heuristic approach
to solve it on general graphs. Similarly, Y. Shen et al. [28,27] provided also complexity analysis for CNP (called it CND) on
general graphs, unit disks and power-law graphs.

Below we give the definition of the first two alternatives of the CNDP, namely CNP and CC-CNP:

1. CNP [32,4]: given a graph G and an integer k, find a set of k nodes, deletion of which results in a maximum fragmentation
of G by minimizing pairwise connectivity in the induced graph.

2. CC-CNP [6]: given a graph G, find the minimum set of nodes, deletion of which limits the connectivity indices of nodes,
in the induced graph, to a given bound.

In this paper, we introduce and study a new variant of Critical Node Detection problem, called 3C-CNP for Component-
Cardinality-Constrained Critical Node Problem. Given a graph G = (V , E), a non-negative cost cij is specified for each edge
(vi, vj) ∈ E, a weight wi is specified for deleting each node vi ∈ V , and an integer L > 0 is given as input. Given a set of
nodes A ⊆ V , deletion of which induces a residual graph G[V \ A]whose connected components have the following sets of
nodes: h1, h2, . . . , hp. The 3C-CNP seeks to find A such that:

minimize

vi∈A

wi (1)

s.t. ∀σk ∈ G[V \ A],


vi,vj∈hk

cij ≤ L. (2)

Thus, 3C-CNP consists in finding a set of nodes A ⊆ V of minimal total weight, such that the total connection costs of
each connected component, in the induced graph G[V \ A], is no more than L.

In the unit case,wherewi = cij = 1, 3C-CNP asks for deleting as fewnodes as possible, such that the pairwise connectivity
of each connected component is at most L. (i.e., minimizing the cardinality of A, rather than the total weight, such that the
pairwise connectivity, rather than the total connection cost, is no more than L).
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