Edge intersection graphs of L-shaped paths in grids

Kathie Cameron ${ }^{\text {a }}$, Steven Chaplick ${ }^{\mathrm{b}, *}$, Chính T. Hoàng ${ }^{\mathrm{C}}$
${ }^{\text {a }}$ Department of Mathematics, Wilfrid Laurier University, Waterloo, ON, Canada
${ }^{\mathrm{b}}$ Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
${ }^{\text {c }}$ Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, ON, Canada

A R TICLE INFO

Article history:

Received 14 January 2014
Received in revised form 5 December 2014
Accepted 29 January 2015
Available online 9 March 2015

Keywords:

Edge intersection graphs
Grid paths
Split graphs
NP-completeness
Recognition algorithms
L-graphs

Abstract

In this paper we continue the study of the edge intersection graphs of one (or zero) bend paths on a rectangular grid. That is, the edge intersection graphs where each vertex is represented by one of the following shapes: $\llcorner,\ulcorner\lrcorner,$,$\urcorner , and we consider zero bend paths$ (i.e., | and -) to be degenerate $\left\llcorner\right.$'s. These graphs, called B_{1}-EPG graphs, were first introduced by Golumbic et al. (2009). We consider the natural subclasses of B_{1}-EPG formed by the subsets of the four single bend shapes (i.e., $\{\},\{\llcorner,\ulcorner \},\{\llcorner\urcorner$,$\} , and \{\llcorner,\ulcorner\urcorner\}$,$) and we denote the$ classes by [८], [$\llcorner,\ulcorner],[\llcorner\urcorner$,$] , and [\llcorner,\ulcorner\urcorner$,$] respectively. Note: all other subsets are isomorphic$ to these up to 90 degree rotation. We show that testing for membership in each of these classes is NP-complete and observe the expected strict inclusions and incomparability (i.e., $\left[\left] \subsetneq\left[\left\llcorner,\ulcorner],[\llcorner\urcorner,] \subsetneq\left[\llcorner,\ulcorner\urcorner,] \subsetneq B_{1}-\right.\right.\right.\right.\right.$ EPG and $[\llcorner,\ulcorner]$ is incomparable with [$\llcorner\urcorner$,$]). Additionally,$ we give characterizations and polytime recognition algorithms for special subclasses of Split $\cap[]$.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A graph G is called an EPG graph if G is the intersection graph of paths on a rectilinear grid, where each vertex in G corresponds to a path on the grid and two vertices are adjacent in G if and only if the corresponding paths share an edge on the grid. EPG graphs were introduced by Golumbic et al. [7]. The motivation for studying these graphs comes from circuit layout problems [2]. Golumbic et al. [7] defined a $B_{k}-E P G$ graph to be the edge intersection graph of paths on a grid where the paths are allowed to have at most k bends (turns). The B_{0}-EPG graphs are exactly the well studied interval graphs (the intersection graphs of intervals on a line).

Golumbic and Jamison [6] proved that the recognition problem for the edge intersection graphs of paths in trees (EPT) is NP-complete even when restricted to chordal graphs (i.e., graphs without induced k-cycles for $k \geq 4$). Heldt et al. [8] proved that the recognition problem for B_{1}-EPG is NP-complete. In a recent paper Epstein et al. [5] have demonstrated that both the coloring problem and the independent set problem are NP-complete on B_{1}-EPG graphs. They have further shown that these problems can be 4 -approximated in polynomial time when a B_{1}-EPG representation is given and that the clique problem can be solved optimally in polynomial time even without a given EPG representation.

A graph is chordal if it does not contain a chordless cycle with at least four vertices as an induced subgraph. A graph is a split graph if its vertices can be partitioned into a clique and a stable set; Split denotes the class of split graphs. Asinowski and Ries [1] characterized special subclasses of chordal B_{1}-EPG graphs.

[^0]

Fig. 1. Left: An edge-clique. Right: A claw-clique.

Fig. 2. Left: C_{4} and representations of it. Right: $K_{2,3}$ and representations of it.
Consider a B_{1}-EPG graph G with a path representation on a grid. The paths can be of the following four shapes: $\llcorner,\ulcorner\lrcorner,$,$\urcorner .$ In this paper, we study B_{1}-EPG graphs whose paths on the grid belong to a proper subset of the four shapes. If s is a subset of $\{\llcorner,\ulcorner\lrcorner,\urcorner$,$\} , then [\delta]$ denotes the class of graphs that can be represented by paths whose shapes belong to 8 . It is important to note that we also zero-bend paths (i.e., vertical and horizontal line segments) to be $\llcorner s$. In particular, an [ᄂ]-representation of a graph may have some of its vertices represented as zero-bend paths. We are especially interested in the class [$\left]\right.$ of B_{1}-EPG graphs whose paths are of the type \llcorner. Our main results are:

- Establishment of expected separation between the classes: $\left[\left] \subsetneq\left[\left\llcorner,\ulcorner],[\llcorner\urcorner,] \subsetneq\left[\llcorner,\ulcorner\urcorner,] \subsetneq B_{1}\right.\right.\right.\right.\right.$-EPG and the incomparability between [\llcorner,\ulcorner] and [\llcorner,$\urcorner].$
- A proof of NP-completeness of recognition of [$\left\llcorner\right.$] and of each of the other subclasses of B_{1}-EPG mentioned above.
- Characterizations of, and recognition algorithms for gem-free split [L]-graphs and bull-free split [L]-graphs.

In Section 2, we discuss background results and establish some properties of B_{1}-EPG graphs. In Section 3, we show that recognition of [\llcorner] and of each of the other subclasses is an NP-complete problem. In Section 4, we give polytime recognition algorithms for the classes of gem-free split [L]-graphs and of bull-free split [\llcorner]-graphs. We conclude with some open questions in Section 5. An extended abstract of this paper appeared at LAGOS'13 Cameron et al. (2013) [4].

2. Properties of $\boldsymbol{B}_{\mathbf{1}}$-EPG graphs

Let \mathcal{P} be a collection of nontrivial simple paths on a rectilinear grid \mathscr{G}. (The end-points of each path are grid points.) The edge intersection graph $\operatorname{EPG}(\mathcal{P})$ has a vertex v for each path $P_{v} \in \mathcal{P}$ and two vertices are adjacent in $\operatorname{EPG}(\mathcal{P})$ if the corresponding paths in \mathcal{P} share an edge of g. For any grid edge e, the set of paths containing e is a clique in $E P G(\mathscr{P})$; such a clique is called an edge-clique [7]. A claw in a grid consists of three grid edges meeting at a grid point. The set of paths which contain two of the three edges of a claw is a clique; such a clique is called a claw-clique [7] (see Fig. 1).

Lemma 1 ([7]). Consider a B_{1}-EPG representation of a graph G. Every clique in G corresponds to either an edge-clique or a clawclique.

The neighborhood $N(x)$ of a vertex x is the set of vertices adjacent to x. A set of vertices is stable if no two are adjacent. An asteroidal triple (AT) is a stable set of size three such that for every pair, there is a path between them which avoids the neighborhood of the other vertex.

Lemma 2 (AT Lemma [1, Theorem 9]). In a B_{1}-EPG graph, no vertex can have an AT in its neighborhood.
Let C_{4} denote the chordless cycle a, b, c, d, a on four vertices. Golumbic et al. [7] proved that any B_{1}-EPG representation of C_{4} corresponds to what they call a "true pie", a "false pie", or a "frame". True and false pies require paths other than \llcorner 's. A frame is a rectangle in the grid g such that each corner is the bend-point for one of P_{a}, P_{b}, P_{c} and $P_{d} ; P_{a} \cap P_{b}, P_{b} \cap P_{c}, P_{c} \cap P_{d}$, and $P_{d} \cap P_{a}$ each contain at least one grid edge; and $P_{a} \cap P_{c}$ and $P_{b} \cap P_{d}$ each do not contain an grid edge. Consider the C_{4} and four representations of it shown in Fig. 2. The first three representations are frames, the fourth is a false pie, and the fifth is a true pie. It follows that:

Lemma 3 (C_{4} Lemma). In an [$\left]\right.$ - or $\left[\left\llcorner,\ulcorner]\right.\right.$-representation of a C_{4}, every \llcorner, and \ulcorner has a neighbor on both its vertical segment and on its horizontal segment.

Observation 4. $K_{2,3}$ is in $[\llcorner\urcorner$,$] .$
Proof. See Fig. 2 for an [$\llcorner\urcorner$,$] -representation of K_{2,3}$.
Lemma 5 ($K_{2,3}$ Lemma). In an $[\llcorner\urcorner$,$] -representation of a K_{2,3}$ every \llcorner, and \urcorner has a neighbor on both its vertical segment and on its horizontal segment.

Proof. Consider $K_{2,3}$ to be the complete bipartite graph with bipartition $\{\{a, b\},\{c, d, e\}\}$. Note that each of the following is a $C_{4}: a, c, b, d, a ; a, c, b, e, a$; and a, d, b, e, a. As noted above, any B_{1}-EPG representation of C_{4} corresponds to a "true pie", a "false pie", or a "frame". True pies require paths of all four types, but false pies and frames can be made from just \llcorner 's and \urcorner 's.

https://daneshyari.com/en/article/419215

Download Persian Version:

https://daneshyari.com/article/419215

Daneshyari.com

[^0]: * Corresponding author. Tel.: +49 30314 28706; fax: +49 3031425191.

 E-mail addresses: kcameron@wlu.ca (K. Cameron), chaplick@math.tu-berlin.de (S. Chaplick), choang@wlu.ca (C.T. Hoàng).
 http://dx.doi.org/10.1016/j.dam.2015.01.039
 0166-218X/© 2015 Elsevier B.V. All rights reserved.

