Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Edge intersection graphs of *L*-shaped paths in grids

Kathie Cameron^a, Steven Chaplick^{b,*}, Chính T. Hoàng^c

^a Department of Mathematics, Wilfrid Laurier University, Waterloo, ON, Canada

^b Institut für Mathematik, Technische Universität Berlin, Berlin, Germany

^c Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, ON, Canada

ARTICLE INFO

Article history: Received 14 January 2014 Received in revised form 5 December 2014 Accepted 29 January 2015 Available online 9 March 2015

Keywords: Edge intersection graphs Grid paths Split graphs NP-completeness Recognition algorithms L-graphs

ABSTRACT

In this paper we continue the study of the edge intersection graphs of one (or zero) bend paths on a rectangular grid. That is, the edge intersection graphs where each vertex is represented by one of the following shapes: $\lfloor, \lceil, \lrcorner, \rceil$, and we consider zero bend paths (i.e., $| \text{ and } - \rangle$ to be degenerate \lfloor 's. These graphs, called B_1 -EPG graphs, were first introduced by Golumbic et al. (2009). We consider the natural subclasses of B_1 -EPG formed by the subsets of the four single bend shapes (i.e., $\lfloor \bot, \rceil, \lfloor \bot, \neg \rceil$, and $\{\lfloor, \neg, \neg \rceil$) and we denote the classes by $\lfloor \bot, \lfloor, \neg \rceil$, $\lfloor \bot, \neg \rceil$, and $\lfloor \bot, \neg, \neg \rceil$ respectively. Note: all other subsets are isomorphic to these up to 90 degree rotation. We show that testing for membership in each of these classes is NP-complete and observe the expected strict inclusions and incomparability (i.e., $\lfloor \bot, \subseteq \rfloor, \lfloor, \neg, \rceil, \lfloor_{\bot}, \neg \rceil \subsetneq B_1$ -EPG and $\lfloor \bot, \neg \rceil$ is incomparable with $\lfloor \bot, \neg \rceil$). Additionally, we give characterizations and polytime recognition algorithms for special subclasses of *Split* $\cap \lfloor \bot \rceil$.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A graph *G* is called an *EPG graph* if *G* is the intersection graph of paths on a rectilinear grid, where each vertex in *G* corresponds to a path on the grid and two vertices are adjacent in *G* if and only if the corresponding paths share an edge on the grid. EPG graphs were introduced by Golumbic et al. [7]. The motivation for studying these graphs comes from circuit layout problems [2]. Golumbic et al. [7] defined a B_k -*EPG graph* to be the edge intersection graph of paths on a grid where the paths are allowed to have at most *k* bends (turns). The B_0 -EPG graphs are exactly the well studied *interval graphs* (the intersection graphs of intervals on a line).

Golumbic and Jamison [6] proved that the recognition problem for the edge intersection graphs of paths in trees (EPT) is NP-complete even when restricted to chordal graphs (i.e., graphs without induced *k*-cycles for $k \ge 4$). Heldt et al. [8] proved that the recognition problem for B_1 -EPG is NP-complete. In a recent paper Epstein et al. [5] have demonstrated that both the coloring problem and the independent set problem are NP-complete on B_1 -EPG graphs. They have further shown that these problems can be 4-approximated in polynomial time when a B_1 -EPG representation is given and that the clique problem can be solved optimally in polynomial time even without a given EPG representation.

A graph is *chordal* if it does not contain a chordless cycle with at least four vertices as an induced subgraph. A graph is a *split graph* if its vertices can be partitioned into a clique and a stable set; *Split* denotes the class of split graphs. Asinowski and Ries [1] characterized special subclasses of chordal B_1 -EPG graphs.

http://dx.doi.org/10.1016/j.dam.2015.01.039 0166-218X/© 2015 Elsevier B.V. All rights reserved.

^{*} Corresponding author. Tel.: +49 30 314 28706; fax: +49 30 314 25191.

E-mail addresses: kcameron@wlu.ca (K. Cameron), chaplick@math.tu-berlin.de (S. Chaplick), choang@wlu.ca (C.T. Hoàng).

K. Cameron et al. / Discrete Applied Mathematics 210 (2016) 185-194

Fig. 1. Left: An edge-clique. Right: A claw-clique.

Fig. 2. Left: C₄ and representations of it. Right: K_{2,3} and representations of it.

Consider a B_1 -EPG graph G with a path representation on a grid. The paths can be of the following four shapes: $\lfloor, \lceil, \lrcorner, \rceil$. In this paper, we study B_1 -EPG graphs whose paths on the grid belong to a proper subset of the four shapes. If \mathscr{E} is a subset of $\lfloor \Box, \lceil, \lrcorner, \rceil$, \rceil , then $[\mathscr{E}]$ denotes the class of graphs that can be represented by paths whose shapes belong to \mathscr{E} . It is important to note that we also zero-bend paths (i.e., vertical and horizontal line segments) to be $\lfloor S$. In particular, an $\lfloor \Box \rfloor$ -representation of a graph may have some of its vertices represented as zero-bend paths. We are especially interested in the class $\lfloor L \rfloor$ of B_1 -EPG graphs whose paths are of the type \lfloor . Our main results are:

- Establishment of expected separation between the classes: [L] ⊊ [L, Γ], [L, ¬] ⊊ [L, Γ, ¬] ⊊ B₁-EPG and the incomparability between [L, Γ] and [L, ¬].
- A proof of NP-completeness of recognition of [_] and of each of the other subclasses of B₁-EPG mentioned above.
- Characterizations of, and recognition algorithms for gem-free split [L]-graphs and bull-free split [L]-graphs.

In Section 2, we discuss background results and establish some properties of B_1 -EPG graphs. In Section 3, we show that recognition of $[_]$ and of each of the other subclasses is an NP-complete problem. In Section 4, we give polytime recognition algorithms for the classes of gem-free split $[_]$ -graphs and of bull-free split $[_]$ -graphs. We conclude with some open questions in Section 5. An extended abstract of this paper appeared at LAGOS'13 Cameron et al. (2013) [4].

2. Properties of *B*₁-EPG graphs

Let \mathcal{P} be a collection of nontrivial simple paths on a rectilinear grid \mathcal{G} . (The end-points of each path are grid points.) The *edge intersection graph* $EPG(\mathcal{P})$ has a vertex v for each path $P_v \in \mathcal{P}$ and two vertices are adjacent in $EPG(\mathcal{P})$ if the corresponding paths in \mathcal{P} share an edge of \mathcal{G} . For any grid edge e, the set of paths containing e is a clique in $EPG(\mathcal{P})$; such a clique is called an *edge-clique* [7]. A *claw* in a grid consists of three grid edges meeting at a grid point. The set of paths which contain two of the three edges of a claw is a clique; such a clique is called a *claw-clique* [7] (see Fig. 1).

Lemma 1 ([7]). Consider a B₁-EPG representation of a graph G. Every clique in G corresponds to either an edge-clique or a clawclique.

The *neighborhood* N(x) of a vertex x is the set of vertices adjacent to x. A set of vertices is *stable* if no two are adjacent. An *asteroidal triple* (AT) is a stable set of size three such that for every pair, there is a path between them which avoids the neighborhood of the other vertex.

Lemma 2 (AT Lemma [1, Theorem 9]). In a B₁-EPG graph, no vertex can have an AT in its neighborhood.

Let C_4 denote the chordless cycle a, b, c, d, a on four vertices. Golumbic et al. [7] proved that any B_1 -EPG representation of C_4 corresponds to what they call a "true pie", a "false pie", or a "frame". True and false pies require paths other than \lfloor 's. A *frame* is a rectangle in the grid \mathcal{G} such that each corner is the bend-point for one of P_a, P_b, P_c and $P_d; P_a \cap P_b, P_b \cap P_c, P_c \cap P_d$, and $P_d \cap P_a$ each contain at least one grid edge; and $P_a \cap P_c$ and $P_b \cap P_d$ each do not contain an grid edge. Consider the C_4 and four representations of it shown in Fig. 2. The first three representations are frames, the fourth is a false pie, and the fifth is a true pie. It follows that:

Lemma 3 (C_4 Lemma). In an $[_]$ - or $[_, \ulcorner]$ -representation of a C_4 , every $_$, and \ulcorner has a neighbor on both its vertical segment and on its horizontal segment.

Observation 4. $K_{2,3}$ *is in* $[\llcorner, \urcorner]$.

Proof. See Fig. 2 for an $[\bot, \neg]$ -representation of $K_{2,3}$.

Lemma 5 ($K_{2,3}$ Lemma). In an $[_, \neg]$ -representation of a $K_{2,3}$ every $_$, and \neg has a neighbor on both its vertical segment and on its horizontal segment.

Proof. Consider $K_{2,3}$ to be the complete bipartite graph with bipartition $\{\{a, b\}, \{c, d, e\}\}$. Note that each of the following is a C_4 : a, c, b, d, a; a, c, b, e, a; and a, d, b, e, a. As noted above, any B_1 -EPG representation of C_4 corresponds to a "true pie", a "false pie", or a "frame". True pies require paths of all four types, but false pies and frames can be made from just $_$'s and ¬'s.

Download English Version:

https://daneshyari.com/en/article/419215

Download Persian Version:

https://daneshyari.com/article/419215

Daneshyari.com