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a b s t r a c t

Let r(G,H) be the smallest integer N such that for any 2-coloring (say, red and blue) of the
edges ofKn, n > N , there is either a red copy ofG or a blue copy ofH . LetKn−K1,s be the com-
plete graph on n vertices fromwhich the edges of K1,s are dropped. In this note we present
exact values for r(Km−K1,1, Kn−K1,s) and newupper bounds for r(Km, Kn−K1,s) in numer-
ous cases. We also present some results for the Ramsey number ofWheels versus Kn −K1,s.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let G and H be two graphs. Let r(G,H) be the smallest integer N such that for any 2-coloring (say, red and blue) of the
edges of Kn, n > N there is either a red copy of G or a blue copy of H . Let Kn − K1,s be the complete graph on n vertices from
which the edges of K1,s are dropped. We notice that Kn − K1,1 = Kn − e (the complete graph on n vertices from which an
edge is dropped) and Kn −K1,2 = Kn −P3 (the complete graph on n vertices fromwhich a path on three vertices is dropped).

In this note we investigate r(Km −e, Kn −K1,s) and r(Km, Kn −K1,s) for a variety of integersm, n and s. In the next section,
we prove our main result (Theorem 1). In Section 3, we will present exact values for r(Km − e, Kn − K1,s) when n = 3 or
4 and some values of m and s. In Section 4, new upper bounds for r(Km, Kn − P3) for several integers m and n are given. In
Section 5, we give new upper bounds for r(Km, Kn − K1,s) when m, s > 3 and several values of n. In Section 6, we present
some equalities for r(K4, Kn − K1,s) extending the validity of some results given in [3]. Finally, in Section 7, we will present
results concerning the Ramsey number of theWheelW5 versus Kn −K1,s. We present exact values for r(W5, K6 −K1,s)when
s = 3 and 4 and the equalities r(W5, Kn − K1,s) = r(W5, Kn−1) when n = 7 and 8 for some values of s.

Some known values/bounds for specific r(Km, Kn) needed for this paper are given in Appendix.

2. Main result

Let G be a graph and denote by Gv the graph obtained from G to which a new vertex v, incident to all the vertices of G, is
added. Our main result is the following

Theorem 1. Let n and s be positive integers. Let G1 be any graph and let N be an integer such that N > r(Gv
1, Kn). If

(s+1)(N−n)
n


> r(G1, Kn+1 − K1,s) then r(Gv

1, Kn+1 − K1,s) 6 N.

Proof. Let KN be a complete graph on N vertices and consider any 2-coloring of the edges of KN (say, red and blue). We shall
show that there is either a Gv

1 red or a Kn+1 − K1,s blue. Since N > r(Gv
1, Kn) then KN has a red Gv

1 or a blue Kn. In the former
case we are done, so let us suppose that KN admit a blue Kn, that we will denote by H . We have two cases.
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Case (1) There exists a vertex u ∈ V (KN \ H) such that |N r
H(u)| 6 s where N r

H(u) is the set of vertices in H that are joined to
u by a red edge. In this case, we may construct the blue graph G′

= Kn+1 − K1,|Nr
H (u)|, this is done by taking H (containing n

vertices) and vertex u together with the blue edges between u and the vertices of H . Now, since |N r
H(u)| 6 s then the graph

Kn+1 − K1,s is contained in G′ (and thus we found a blue Kn+1 − K1,s).
Case (2) |N r

H(u)| > s for every vertex u ∈ V (KN \ H). Then we have that the number of red edges {x, y} with x ∈ V (H)
and y ∈ V (KN \ H) is at least (N − n)(s + 1). So, by the pigeon hole principle, we have that there exists at least one vertex
v ∈ V (H) such that drKN\H(v) >


(s+1)(N−n)

n


, where drKN\H(v) =

N r
KN\H(v)

 and N r
KN\H(v) denotes the set of vertices in

KN \ H incident to v with a red edge. But since


(s+1)(N−n)
n


> r(G1, Kn+1 − K1,s) then the graph induced by N r

KN\H(v) has
either a blue Kn+1 − K1,s (and we are done) or a red G1 to which we add vertex v to find a red Gv as desired. �

3. Some exact values for r(Km − e,Kn − K1,s)

Let s > 1 be an integer. We clearly have that
r(K3 − e, Km) 6 r(K3 − e, Km+1 − K1,s).

Since
r(K3 − e, Km+1 − K1,s) 6 r(K3 − e, Km+1 − e)

and (see [10])
r(K3 − e, Km) = r(K3 − e, Km+1 − e) = 2m − 1

then
r(K3 − e, Km+1 − K1,s) = 2m − 1 for each s = 1, . . . ,m − 1.

3.1. Case m = 4

Corollary 1. (a) r(K4 − e, K5 − K1,3) = 11.
(b) r(K4 − e, K6 − K1,s) = 16 for any 3 6 s 6 4.
(c) r(K4 − e, K7 − K1,s) = 21 for any 4 6 s 6 5.
Proof. (a) It is clear that r(K4−e, K4) 6 r(K4−e, K5−K1,3). Since r(K4−e, K4) = 11 (see [10]) then 11 6 r(K4−e, K5−K1,3).

Wewill now show that r(K4 −e, K5 −K1,3) 6 11. By taking N = 11, s = 3 and n = 4, we have that


(s+1)(N−n)
n


=

 4×7
4


=

7 = r(K3 − e, K5 − K1,3) and so, by Theorem 1, we have r(K4 − e, K5 − K1,3) 6 11, and the result follows.
The proofs for (b) and (c) are analogues. We just need to check that conditions of Theorem 1 are satisfied by taking:

N = r(K4 − e, K5) = 16 for (b) and N = r(K4 − e, K6) = 21 for (c). �

We notice that Corollary 1(a) is claimed in [8] without a proof. Corollary 1(b) can also be obtained by using that r(K4 −

e, K6 − P3) = 16 [9] since 16 = r(K4 − e, K6 − P3) > r(K4 − e, K6 − K1,s) > r(K4 − e, K5) = 16 for s ∈ {3, 4}. Corollary 1(c)
was first posed by Hoeth and Mengersen [9]. The best known upper bounds for r(K4 − e, K7 − K1,3) and r(K4 − e, K7 − P3)
are obtained by applying the following classical recursive formula:

r(Km − e, Kn − K1,s) 6 r(Km−1 − e, Kn − K1,s) + r(Km − e, Kn−1 − K1,s). (1)
Hence

r(K4 − e, K7 − K1,3) 6 r(K3 − e, K7 − K1,3) + r(K4 − e, K6 − K1,3) = 11 + 16 = 27
and

r(K4 − e, K7 − P3) 6 r(K3 − e, K7 − P3) + r(K4 − e, K6 − P3) = 11 + 16 = 27.
We are able to improve the above upper bounds.

Corollary 2. 21 6 r(K4 − e, K7 − K1,3) 6 22.
Proof. It is clear that r(K4 − e, K6) 6 r(K4 − e, K7 −K1,3). Since r(K4 − e, K6) = 21 (see [10]), then 21 6 r(K4 − e, K7 −K1,3).

Wewill now show that r(K4−e, K7−K1,3) 6 22. By takingN = 22, s = 3 and n = 6, we have that


(s+1)(N−n)
n


=

 4×16
6


=

11 = r(K3 − e, K7 − K1,3) and so, by Theorem 1, we have that r(K4 − e, K7 − K1,3) 6 22, and the result follows. �

The above upper bound improves the previously best known one, given by r(K4 − e, K7 − K1,3) 6 27.

3.2. Case m = 5

The following equality is claimed in [8] without a proof.

Corollary 3. r(K5 − e, K5 − K1,3) = 19.
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