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1. Introduction

Let G and H be two graphs. Let (G, H) be the smallest integer N such that for any 2-coloring (say, red and blue) of the
edges of K, n > N there is either a red copy of G or a blue copy of H. Let K, — K; ; be the complete graph on n vertices from
which the edges of K; s are dropped. We notice that K, — K; 1 = K, — e (the complete graph on n vertices from which an
edge is dropped) and K, — K; » = K, — P; (the complete graph on n vertices from which a path on three vertices is dropped).

In this note we investigate r (K, — e, K, —Kj 5) and r (Kp, K, — Kj ) for a variety of integers m, n and s. In the next section,
we prove our main result (Theorem 1). In Section 3, we will present exact values for r(K,, — e, K, — K;5) whenn = 3 or
4 and some values of m and s. In Section 4, new upper bounds for r (K, K, — P3) for several integers m and n are given. In
Section 5, we give new upper bounds for r(Kp, K, — K; ) when m, s > 3 and several values of n. In Section 6, we present
some equalities for r (K4, K, — K; 5) extending the validity of some results given in [3]. Finally, in Section 7, we will present
results concerning the Ramsey number of the Wheel W5 versus K, — K; 5. We present exact values for r(Ws, Kg — K7 5) when
s = 3 and 4 and the equalities r (W5, K, — Ky5) = r(Ws, K;,_1) when n = 7 and 8 for some values of s.

Some known values/bounds for specific r (K, K;;) needed for this paper are given in Appendix.

2. Main result

Let G be a graph and denote by G" the graph obtained from G to which a new vertex v, incident to all the vertices of G, is
added. Our main result is the following
Theorem 1. Let n and s be positive integers. Let G, be any graph and let N be an integer such that N > r(GY, Ky). If
(WW > 1(Gy, Knar — Kus) then 1(GY, Kusey — Ki5) < N.
Proof. Let Ky be a complete graph on N vertices and consider any 2-coloring of the edges of Ky (say, red and blue). We shall

show that there is either a G} red or a K1 — Ky ¢ blue. Since N > r (G}, K,) then Ky has a red GJ or a blue K. In the former
case we are done, so let us suppose that Ky admit a blue K, that we will denote by H. We have two cases.
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Case (1) There exists a vertex u € V(Ky \ H) such that [N}, (u)| < s where Nj;(u) is the set of vertices in H that are joined to
u by a red edge. In this case, we may construct the blue graph ¢’ = K, — K] JINE @l this is done by taking H (containing n
vertices) and vertex u together with the blue edges between u and the vertices of H. Now, since |N},(u)| < s then the graph
Kn+1 — Ky 5 is contained in G’ (and thus we found a blue K, 1 — Ky 5).

Case (2) INj;(u)| > s for every vertex u € V(Ky \ H). Then we have that the number of red edges {x, y} withx € V(H)
andy € V(Ky \ H) is at least (N — n)(s 4+ 1). So, by the pigeon hole principle, we have that there exists at least one vertex

v € V(H) such that dy ,,,(v) > {W—‘ where dj \,(v) = ‘ o and Ng ., (v) denotes the set of vertices in

Ky \ H incident to v with a red edge. But since P”DHM—‘ > 1(Gy, Kp1 — Ki5) then the graph induced by N,QN\H(U) has
either a blue K1 — K; s (and we are done) or a red G; to which we add vertex v to find a red G as desired. O

3. Some exact values for r (K, — e, K, — Ky 5)

Let s > 1 be an integer. We clearly have that

r(Kz —e, Kp) <1(Kz — e, Knt1 — Ky g).

Since
r(Ks —e, Kmy1 — Kis) <1(K3 —e,Kny1 —e)

and (see [10])
r(Kzs —e,Kp) =1r(Ks —e,Kpty1 —e) =2m—1

then
r(Ks —e,Kmy1 —Kis) =2m—1 foreachs=1,...,m—1.

31. Casem =4

Corollary 1. (a) r(Ky —e, Ks — K].3) =11
(b) r(Ky —e,Kg — Ky5) = 16 forany3 <s < 4
(c) r(Ky —e,K; —Ky5) =21 forany 4 < s < 5.

Proof. (a)ltis clearthatr(Ks—e, K4) < r(Ks—e, Ks —Kj 3).Sincer(Ks—e, K4) = 11(see[10]) then 11 < r(Ks—e, Ks — K 3).
We will now show that (K4 —e, Ks — K 3) < 11.By taking N = 11, s = 3 and n = 4, we have that PSH)(N ”)—‘ [4X7-| =

7 =r1(K3 — e, Ks — K 3) and so, by Theorem 1, we have r (K — e, Ks — K7 3) < 11, and the result follows.
The proofs for (b) and (c) are analogues. We just need to check that conditions of Theorem 1 are satisfied by taking:
N =r(Ks—e,Ks) =16 for(b)and N =r(Ky — e, Kg) = 21for(c). O

We notice that Corollary 1(a) is claimed in [8] without a proof. Corollary 1(b) can also be obtained by using that r(K; —
e,Ks —P3) =16 [9] since 16 =r(Ky — e, Kg — P3) > r(Ky — e, Ks — K15) > r(K4 — e, Ks) = 16 for s € {3, 4}. Corollary 1(c)
was first posed by Hoeth and Mengersen [9]. The best known upper bounds for r(Ky — e, K — K7 3) and r(Ky — e, K7 — P3)
are obtained by applying the following classical recursive formula:

(K — e, Ky — K1.5) < 1(Km—1 — €, K — Ky.5) + (K — €, Kn_q — Ky.5). (1)
Hence

r(Ks —e,K; — Ky 3) <1(K3 —e,K; — Ky3) +1(Kq — e, Kg — Ky 3) = 114 16 = 27
and

r(Ky —e, Ky —P3) <r(Ks —e, Ky —P3) + (K4 — e, Kg — P3) = 11 4+ 16 = 27.
We are able to improve the above upper bounds.
Corollary 2. 21 < (K4 — e, K7 — Ky,3) < 22
Proof. Itis clear thatr(Ky —e, Kg) < r(Ky—e, K; — K 3).Sincer(Ks —e, Kg) = 21 (see [10]), then21 < r(K4 — e, K7 — Kj 3).
We will now show that r(K; —e, K7 —K; 3) < 22.BytakingN = 22, s = 3and n = 6, we have that PS“)(N D= [4x16] =
11 =r(K3 — e, K7 — Kj,3) and so, by Theorem 1, we have that r(Ky — e, K7 — K1 3) < 22, and the result follows. O

The above upper bound improves the previously best known one, given by r(Ks — e, K; — K;,3) < 27

32. Casem =5

The following equality is claimed in [8] without a proof.

Corollary 3. r(Ks — e, K5 — K;,3) = 19.
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