On Ramsey numbers of complete graphs with dropped stars

Jonathan Chappelon*, Luis Pedro Montejano, Jorge Luis Ramírez Alfonsín
Université Montpellier 2, Institut de Mathématiques et de Modélisation de Montpellier, Case Courrier 051, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France

ARTICLE INFO

Article history:

Received 15 January 2014
Received in revised form 18 October 2014
Accepted 5 December 2014
Available online 31 December 2014

Keywords:

Ramsey numbers
Graph Ramsey numbers

Abstract

Let $r(G, H)$ be the smallest integer N such that for any 2-coloring (say, red and blue) of the edges of $K_{n}, n \geqslant N$, there is either a red copy of G or a blue copy of H. Let $K_{n}-K_{1, s}$ be the complete graph on n vertices from which the edges of $K_{1, s}$ are dropped. In this note we present exact values for $r\left(K_{m}-K_{1,1}, K_{n}-K_{1, s}\right)$ and new upper bounds for $r\left(K_{m}, K_{n}-K_{1, s}\right)$ in numerous cases. We also present some results for the Ramsey number of Wheels versus $K_{n}-K_{1, s}$. © 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let G and H be two graphs. Let $r(G, H)$ be the smallest integer N such that for any 2-coloring (say, red and blue) of the edges of $K_{n}, n \geqslant N$ there is either a red copy of G or a blue copy of H. Let $K_{n}-K_{1, s}$ be the complete graph on n vertices from which the edges of $K_{1, s}$ are dropped. We notice that $K_{n}-K_{1,1}=K_{n}-e$ (the complete graph on n vertices from which an edge is dropped) and $K_{n}-K_{1,2}=K_{n}-P_{3}$ (the complete graph on n vertices from which a path on three vertices is dropped).

In this note we investigate $r\left(K_{m}-e, K_{n}-K_{1, s}\right)$ and $r\left(K_{m}, K_{n}-K_{1, s}\right)$ for a variety of integers m, n and s. In the next section, we prove our main result (Theorem 1). In Section 3, we will present exact values for $r\left(K_{m}-e, K_{n}-K_{1, s}\right.$) when $n=3$ or 4 and some values of m and s. In Section 4, new upper bounds for $r\left(K_{m}, K_{n}-P_{3}\right)$ for several integers m and n are given. In Section 5, we give new upper bounds for $r\left(K_{m}, K_{n}-K_{1, s}\right)$ when $m, s \geqslant 3$ and several values of n. In Section 6 , we present some equalities for $r\left(K_{4}, K_{n}-K_{1, s}\right)$ extending the validity of some results given in [3]. Finally, in Section 7, we will present results concerning the Ramsey number of the Wheel W_{5} versus $K_{n}-K_{1, s}$. We present exact values for $r\left(W_{5}, K_{6}-K_{1, s}\right)$ when $s=3$ and 4 and the equalities $r\left(W_{5}, K_{n}-K_{1, s}\right)=r\left(W_{5}, K_{n-1}\right)$ when $n=7$ and 8 for some values of s.

Some known values/bounds for specific $r\left(K_{m}, K_{n}\right)$ needed for this paper are given in Appendix.

2. Main result

Let G be a graph and denote by G^{v} the graph obtained from G to which a new vertex v, incident to all the vertices of G, is added. Our main result is the following

Theorem 1. Let n and s be positive integers. Let G_{1} be any graph and let N be an integer such that $N \geqslant r\left(G_{1}^{v}\right.$, K_{n}). If $\left\lceil\frac{(s+1)(N-n)}{n}\right\rceil \geqslant r\left(G_{1}, K_{n+1}-K_{1, s}\right)$ then $r\left(G_{1}^{v}, K_{n+1}-K_{1, s}\right) \leqslant N$.
Proof. Let K_{N} be a complete graph on N vertices and consider any 2-coloring of the edges of K_{N} (say, red and blue). We shall show that there is either a G_{1}^{v} red or a $K_{n+1}-K_{1, s}$ blue. Since $N \geqslant r\left(G_{1}^{v}, K_{n}\right)$ then K_{N} has a red G_{1}^{v} or a blue K_{n}. In the former case we are done, so let us suppose that K_{N} admit a blue K_{n}, that we will denote by H. We have two cases.

[^0]Case (1) There exists a vertex $u \in V\left(K_{N} \backslash H\right)$ such that $\left|N_{H}^{r}(u)\right| \leqslant s$ where $N_{H}^{r}(u)$ is the set of vertices in H that are joined to u by a red edge. In this case, we may construct the blue graph $G^{\prime}=K_{n+1}-K_{1,\left|N_{H}^{r}(u)\right| \text {, this is done by taking } H \text { (containing } n, ~}^{n}$ vertices) and vertex u together with the blue edges between u and the vertices of H. Now, since $\left|N_{H}^{r}(u)\right| \leqslant s$ then the graph $K_{n+1}-K_{1, s}$ is contained in G^{\prime} (and thus we found a blue $K_{n+1}-K_{1, s}$).
Case (2) $\left|N_{H}^{r}(u)\right|>s$ for every vertex $u \in V\left(K_{N} \backslash H\right)$. Then we have that the number of red edges $\{x, y\}$ with $x \in V(H)$ and $y \in V\left(K_{N} \backslash H\right)$ is at least $(N-n)(s+1)$. So, by the pigeon hole principle, we have that there exists at least one vertex $v \in V(H)$ such that $d_{K_{N} \backslash H}^{r}(v) \geqslant\left\lceil\frac{(s+1)(N-n)}{n}\right\rceil$, where $d_{K_{N} \backslash H}^{r}(v)=\left|N_{K_{N} \backslash H}^{r}(v)\right|$ and $N_{K_{N} \backslash H}^{r}(v)$ denotes the set of vertices in $K_{N} \backslash H$ incident to v with a red edge. But since $\left\lceil\frac{(s+1)(N-n)}{n}\right\rceil \geqslant r\left(G_{1}, K_{n+1}-K_{1, s}\right)$ then the graph induced by $N_{K_{N} \backslash H}^{r}(v)$ has either a blue $K_{n+1}-K_{1, s}$ (and we are done) or a red G_{1} to which we add vertex v to find a red G^{v} as desired.

3. Some exact values for $r\left(K_{m}-e, K_{n}-K_{1, s}\right)$

Let $s \geqslant 1$ be an integer. We clearly have that

$$
r\left(K_{3}-e, K_{m}\right) \leqslant r\left(K_{3}-e, K_{m+1}-K_{1, s}\right)
$$

Since

$$
r\left(K_{3}-e, K_{m+1}-K_{1, s}\right) \leqslant r\left(K_{3}-e, K_{m+1}-e\right)
$$

and (see [10])

$$
r\left(K_{3}-e, K_{m}\right)=r\left(K_{3}-e, K_{m+1}-e\right)=2 m-1
$$

then

$$
r\left(K_{3}-e, K_{m+1}-K_{1, s}\right)=2 m-1 \text { for each } s=1, \ldots, m-1
$$

3.1. Case $m=4$

Corollary 1. (a) $r\left(K_{4}-e, K_{5}-K_{1,3}\right)=11$.
(b) $r\left(K_{4}-e, K_{6}-K_{1, s}\right)=16$ for any $3 \leqslant s \leqslant 4$.
(c) $r\left(K_{4}-e, K_{7}-K_{1, s}\right)=21$ for any $4 \leqslant s \leqslant 5$.

Proof. (a) It is clear that $r\left(K_{4}-e, K_{4}\right) \leqslant r\left(K_{4}-e, K_{5}-K_{1,3}\right)$. Since $r\left(K_{4}-e, K_{4}\right)=11$ (see[10]) then $11 \leqslant r\left(K_{4}-e, K_{5}-K_{1,3}\right)$. We will now show that $r\left(K_{4}-e, K_{5}-K_{1,3}\right) \leqslant 11$. By taking $N=11, s=3$ and $n=4$, we have that $\left\lceil\frac{(s+1)(N-n)}{n}\right\rceil=\left\lceil\frac{4 \times 7}{4}\right\rceil=$ $7=r\left(K_{3}-e, K_{5}-K_{1,3}\right)$ and so, by Theorem 1, we have $r\left(K_{4}-e, K_{5}-K_{1,3}\right) \leqslant 11$, and the result follows.

The proofs for (b) and (c) are analogues. We just need to check that conditions of Theorem 1 are satisfied by taking: $N=r\left(K_{4}-e, K_{5}\right)=16$ for (b) and $N=r\left(K_{4}-e, K_{6}\right)=21$ for (c).

We notice that Corollary $1(\mathrm{a})$ is claimed in [8] without a proof. Corollary 1 (b) can also be obtained by using that $r\left(K_{4}-\right.$ $\left.e, K_{6}-P_{3}\right)=16$ [9] since $16=r\left(K_{4}-e, K_{6}-P_{3}\right) \geqslant r\left(K_{4}-e, K_{6}-K_{1, s}\right) \geqslant r\left(K_{4}-e, K_{5}\right)=16$ for $s \in\{3$, 4\}. Corollary 1(c) was first posed by Hoeth and Mengersen [9]. The best known upper bounds for $r\left(K_{4}-e, K_{7}-K_{1,3}\right)$ and $r\left(K_{4}-e, K_{7}-P_{3}\right)$ are obtained by applying the following classical recursive formula:

$$
\begin{equation*}
r\left(K_{m}-e, K_{n}-K_{1, s}\right) \leqslant r\left(K_{m-1}-e, K_{n}-K_{1, s}\right)+r\left(K_{m}-e, K_{n-1}-K_{1, s}\right) \tag{1}
\end{equation*}
$$

Hence

$$
r\left(K_{4}-e, K_{7}-K_{1,3}\right) \leqslant r\left(K_{3}-e, K_{7}-K_{1,3}\right)+r\left(K_{4}-e, K_{6}-K_{1,3}\right)=11+16=27
$$

and

$$
r\left(K_{4}-e, K_{7}-P_{3}\right) \leqslant r\left(K_{3}-e, K_{7}-P_{3}\right)+r\left(K_{4}-e, K_{6}-P_{3}\right)=11+16=27
$$

We are able to improve the above upper bounds.
Corollary 2. $21 \leqslant r\left(K_{4}-e, K_{7}-K_{1,3}\right) \leqslant 22$.
Proof. It is clear that $r\left(K_{4}-e, K_{6}\right) \leqslant r\left(K_{4}-e, K_{7}-K_{1,3}\right)$. Since $r\left(K_{4}-e, K_{6}\right)=21$ (see [10]), then $21 \leqslant r\left(K_{4}-e, K_{7}-K_{1,3}\right)$. We will now show that $r\left(K_{4}-e, K_{7}-K_{1,3}\right) \leqslant 22$. By taking $N=22, s=3$ and $n=6$, we have that $\left\lceil\frac{(s+1)(N-n)}{n}\right\rceil=\left\lceil\frac{4 \times 16}{6}\right\rceil=$ $11=r\left(K_{3}-e, K_{7}-K_{1,3}\right)$ and so, by Theorem 1, we have that $r\left(K_{4}-e, K_{7}-K_{1,3}\right) \leqslant 22$, and the result follows. The above upper bound improves the previously best known one, given by $r\left(K_{4}-e, K_{7}-K_{1,3}\right) \leqslant 27$.

3.2. Case $m=5$

The following equality is claimed in [8] without a proof.
Corollary 3. $r\left(K_{5}-e, K_{5}-K_{1,3}\right)=19$.

https://daneshyari.com/en/article/419217

Download Persian Version:

https://daneshyari.com/article/419217

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jonathan.chappelon@um2.fr (J. Chappelon), lpmontejano@gmail.com (L.P. Montejano), jramirez@um2.fr (J.L. Ramírez Alfonsín).

