A note on the middle levels problem ${ }^{*}$

Andréia C.S. Gusmão ${ }^{\text {a }}$, Letícia R. Bueno ${ }^{\text {a,* }}$, Rodrigo A. Hausen ${ }^{\text {a }}$, Celina M.H. Figueiredo ${ }^{\text {b }}$, Luerbio Faria ${ }^{\text {c }}$
${ }^{\text {a }}$ CMCC, Universidade Federal do ABC, Brazil
${ }^{\mathrm{b}}$ COPPE, Universidade Federal do Rio de Janeiro, Brazil
${ }^{\text {c }}$ IME, Universidade do Estado do Rio de Janeiro, RJ, Brazil

ARTICLE INFO

Article history:

Received 31 December 2013
Received in revised form 30 July 2015
Accepted 2 August 2015
Available online 24 August 2015

Keywords:

Hamiltonian path
Hamiltonian cycle
Middle levels graph
Kneser graph

Abstract

The middle levels problem consists in determining a hamiltonian cycle in the bipartite Kneser graph $B(2 k+1, k)$, also known as the middle levels graph and denoted by B_{k}. Previously, it was proved that a particular hamiltonian path in a reduced graph of B_{k} implies a hamiltonian cycle in B_{k} and a hamiltonian path in the Kneser graph $K(2 k+1, k)$. We show that the existence of such a particular hamiltonian path in a reduced graph of $K(2 k+3, k)$ implies a hamiltonian path in $K(2 k+3, k)$ for $k \equiv 1$ or $2(\bmod 3)$. Moreover, we utilize properties from the middle levels graphs to improve a known algorithm speeding up the search for such a particular hamiltonian path in the reduced graph of B_{k}.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let \mathbb{Z}_{n} be the set $\{1, \ldots, n\}$ and let $\binom{\mathbb{Z}_{n}}{k}$ be the family of all k-subsets of \mathbb{Z}_{n}. The Kneser graph $K(n, k)$ has $\binom{\mathbb{Z}_{n}}{k}$ as its vertex set, and two k-subsets are adjacent if they are disjoint (Fig. 1(a) and (b)). The Kneser graph $K(2 k+1, k)$ is called the odd graph and it is denoted by O_{k} (Fig. 1(a)). Notice that O_{2} is the Petersen graph.

The bipartite Kneser graph $B(n, k)$ has $\binom{\mathbb{Z}_{n}}{k} \cup\binom{\mathbb{Z}_{n}}{n-k}$ as its vertex set and an undirected edge $\{u, v\}$ represents that u either contains or is contained into v (Fig. 1(c)). The graph $B(2 k+1, k)$ is isomorphic to the subgraph of the ($2 k+1$)-cube graph induced by the vertices having exactly k or $(k+1)$ ones. Hence, $B(2 k+1, k)$ is also called the middle levels graph, and it is denoted by B_{k}.

A long standing conjecture due to Lovász [12] claims that every connected vertex-transitive graph has a hamiltonian path. For $n \geq 2 k+1$, the graphs $K(n, k)$ and $B(n, k)$ form well-studied families of connected vertex-transitive graphs, both $\binom{n-k}{k}$-regular. A conjecture due to Biggs [1] claims that the odd graphs are hamiltonian for $k \geq 3$ and a related conjecture by Havel [8] claims that the middle-layers graph is hamiltonian. After more than 30 years, a proof of Havel's conjecture has been announced [14]. Note that, if the Kneser graph $K(n, k)$ has a hamiltonian cycle $\left(A_{1}, A_{2}, A_{3}, \ldots, A_{t}\right)$ where $t=|V(K(n, k))|$ and t is odd, then ($\left.\overline{A_{1}}, A_{2}, \overline{A_{3}}, \ldots, A_{t-1}, \overline{A_{t}}, A_{1}, \overline{A_{2}}, A_{3}, \ldots, \overline{A_{t-1}}, A_{t}\right)$ is a hamiltonian cycle of the bipartite Kneser graph $B(n, k)$. It seems that Havel's conjecture might be slightly easier to prove than Biggs' conjecture, as unlike O_{k} the graph B_{k} is bipartite. At the moment, Biggs' conjecture remains unsolved.

[^0]http://dx.doi.org/10.1016/j.dam.2015.08.001
0166-218X/© 2015 Elsevier B.V. All rights reserved.

Fig. 1. For $k=1$, the graphs: (a) O_{k}; (b) $K(2 k+2, k)$, and; (c) B_{k}.
Apart from the Petersen graph, $K(n, k)$ is hamiltonian if $n \geq\left(3 k+1+\sqrt{5 k^{2}-2 k+1}\right) / 2$, as reported in [5], or if $n \leq 27$ (see [17] and references therein). Recently, Johnson [10] showed how to construct hamiltonian cycles in $K(2 k+i, k)$ for $k \leq 2 l+1$ using hamiltonian cycles from $K\left(2 k+\frac{i}{2}, k\right)$ for $k \leq l$. This implies that, since O_{k} is hamiltonian for $3 \leq k \leq 13$, then $K(2 k+2, k)$ is hamiltonian for $k \leq 27$ and, consequently, $K(2 k+4, k)$ is hamiltonian for $k \leq 55$, and so on. In particular, for $n=2 k+1$, it is known that O_{k} has a hamiltonian path or a hamiltonian cycle for $k \leq 19$ [2,19]. The strategy from [10] cannot be applied to $K(2 k+3, k)$.

According to [16], in an unpublished work, Moews and Reid have determined that B_{k} is hamiltonian when $k \leq 11$. In their work, they have used a reduced graph of the middle levels graph B_{k}, smaller than B_{k} by a factor of $2 n$. Part of the reduction technique had been previously used by Dejter [6]. Later, the reduced graph of the odd graph O_{k} was introduced [2]. It was proved that a particular hamiltonian path - we shall call it a useful path - in the reduced graph of B_{k} and O_{k} provides a hamiltonian cycle and path in B_{k} and O_{k}, respectively [2,16]. In the extended abstract [3], we have established that a useful path in the reduced graph of $K(2 k+2, k)$ implies a hamiltonian cycle in both graphs $B(2 k+2, k)$ and $K(2 k+2, k)$. We observe that the announced proof [14] for Havel's conjecture does not use a useful path in a reduced graph, but instead proposes to modify a 2 -factor locally by flippable pairs to get a single cycle.

At the moment, all known useful paths have been determined by heuristic algorithms. First, a heuristic [16] based on Pósa's path reversal strategy [15] was proposed to search for useful paths in the reduced graph of B_{k}, and had its running time further improved by Shields et al. [18]. Shimada and Amano [19] proposed a partition of the vertices of the reduced graph of B_{k} such that the existence of a path in each set of vertices implies a useful path. They have used the algorithm in [16] to determine useful paths for $k=18,19$.

In Section 2, we show that a useful path in the reduced graph of $K(2 k+3, k)$ implies a hamiltonian path in $K(2 k+3, k)$ for $k \equiv 1$ or $2(\bmod 3)$. In Section 4, we propose an improvement on the algorithm in [16] speeding up the search for useful paths in the reduced graphs of the middle levels graph. Since a useful path in the reduced graph of the middle levels graph gives not only a hamiltonian cycle in B_{k} but also a hamiltonian path in the odd graph O_{k}, our results also contribute to Biggs' conjecture. This improvement is provided by using modular matchings [7], a 1-factorization of B_{k} that has been used in hamiltonicity results in Kneser and Bipartite Kneser graphs [4,9,13]. Experimental results are presented in Section 5. We conclude with some remarks and open problems in Section 6.

2. Useful paths in the reduced graph of $K(2 k+3, k)$

Consider \mathbb{Z}_{n} with arithmetical operations modulo n, and the vertices of $K(n=2 k+i, k)$ as k-subsets of \mathbb{Z}_{n}.
Let $r_{1}=\{1,2, \ldots, k\}$ and $r_{2}=\{2,4,6, \ldots, 2 k=n-i\}$ two k-subsets of \mathbb{Z}_{n}. Given a set $A \subseteq \mathbb{Z}_{n}$ and an integer $\delta \in \mathbb{Z}$, define $A+\delta$ as the set $\{a+\delta: a \in A\}$ and \bar{A} as the set $\mathbb{Z}_{n} \backslash A$. Define the equivalence relation \sim as follows: given $A, B \subset \mathbb{Z}_{n}$, $B \sim A$ if either: (i) $B=A+\delta$ or (ii) $\bar{B}=A+\delta$. Refer to the equivalence class of A under \sim as $\sigma(A)$. We call $A+1$ a shift of A, denoted by $\operatorname{sh}(A)$. Let $\operatorname{sh}^{0}(A)=\operatorname{sh}^{n}(A)=A$, and $\operatorname{sh}^{t+1}(A)=\operatorname{sh}^{t}(\operatorname{sh}(A))$ for $t \geq 0$. If $C=\left(v_{1}, \ldots, v_{j}\right)$ is a path or a cycle, then let $\operatorname{sh}^{t}(C)=\left(s h^{t}\left(v_{1}\right), \ldots, \operatorname{sh}^{t}\left(v_{j}\right)\right)$.

Given a graph G, the reduced graph $R(G)$ is the graph obtained from G by identifying vertices that are equivalent according to \sim. More precisely, the vertices of $R(G)$ are the equivalence classes $\sigma(v)$, for each $v \in V(G)$, and if $\{u, v\} \in E(G)$ then $\{\sigma(u), \sigma(v)\} \in E(R(G))$. Notice that if $\{u, v\} \in E(G)$ satisfies $u \sim v$, then the vertex $\sigma(u) \in V(R(G))$ has a loop. Fig. 2(a) shows the graph $R(K(8,3))$, which is the reduced graph of $K(8,3)$ (Fig. 2(b)).

Shields and Savage [16] showed that the existence of a hamiltonian path that starts with vertex $\sigma\left(r_{1}\right)$ and ends with vertex $\sigma\left(r_{2}\right)$ in the graph $R\left(B_{k}\right)$ implies that B_{k} is hamiltonian. We refer to a hamiltonian path starting with $\sigma\left(r_{1}\right)$ and ending with $\sigma\left(r_{2}\right)$ as a useful path.

The property of a useful path in the reduced graph implying a hamiltonian cycle or path in connected Kneser and bipartite Kneser graphs seems to be true whenever k and n are relatively prime. It has already been proved that, for $n=2 k+1$ or $n=2 k+2$, a useful path in $R(B(n, k))$ implies a hamiltonian cycle or a hamiltonian path in $B(n, k)$ and $K(n, k)[3,2,16]$. In this paper, we extend this result for $K(2 k+3, k)$. Lemmas 1 to 4 are generalizations from $[3,2,16]$ for any $n \geq 2 k+1$, needed to achieve our results.

Lemma 1. For $n \geq 2 k+1, R(K(n, k))=R(B(n, k))$.
Proof. The vertices of $K(n, k)$ are the k-subsets of \mathbb{Z}_{n}, and the vertices of $B(n, k)$ are the k-subsets and ($\left.n-k\right)$-subsets of \mathbb{Z}_{n}. Since the complement of a k-subset is an $(n-k)$-subset, we have $V(R(K(n, k)))=V(R(B(n, k)))$. There is an edge $\{A, B\} \in E(K(n, k))$ if $A \cap B=\emptyset$, and there is an edge $\{A, \bar{B}\} \in E(B(n, k))$ if $A \subset \bar{B}$. Since $n \geq 2 k+1$ and, therefore, $|A| \neq|\bar{B}|$, both statements are equivalent and $E(R(K(n, k)))=E(R(B(n, k)))$.

https://daneshyari.com/en/article/419226

Download Persian Version:

https://daneshyari.com/article/419226

Daneshyari.com

[^0]: * An extended abstract with some results of this paper was presented at LAGOS 2011, the Latin-American Algorithms, Graphs and Optimization Symposium, and appeared in Electron. Notes Discrete Math. 37 (2011) 291-296. Research partially supported by Brazilian agencies CNPq and FAPERJ.
 * Corresponding author.

 E-mail addresses: andreia.gusmao@ufabc.edu.br (A.C.S. Gusmão), leticia.bueno@ufabc.edu.br (L.R. Bueno), hausen@compscinet.org (R.A. Hausen), celina@cos.ufrj.br (C.M.H. Figueiredo), luerbio@cos.ufrj.br (L. Faria).

