Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Andréia C.S. Gusmão^a, Letícia R. Bueno^{a,*}, Rodrigo A. Hausen^a, Celina M.H. Figueiredo^b, Luerbio Faria^c

^a CMCC, Universidade Federal do ABC, Brazil

^b COPPE, Universidade Federal do Rio de Janeiro, Brazil

^c IME, Universidade do Estado do Rio de Janeiro, RJ, Brazil

ARTICLE INFO

Article history: Received 31 December 2013 Received in revised form 30 July 2015 Accepted 2 August 2015 Available online 24 August 2015

Keywords: Hamiltonian path Hamiltonian cycle Middle levels graph Kneser graph

1. Introduction

ABSTRACT

The middle levels problem consists in determining a hamiltonian cycle in the bipartite Kneser graph B(2k + 1, k), also known as the middle levels graph and denoted by B_k . Previously, it was proved that a particular hamiltonian path in a reduced graph of B_k implies a hamiltonian cycle in B_k and a hamiltonian path in the Kneser graph K(2k + 1, k). We show that the existence of such a particular hamiltonian path in a reduced graph of K(2k + 3, k) implies a hamiltonian path in K(2k + 3, k) for $k \equiv 1$ or 2 (mod 3). Moreover, we utilize properties from the middle levels graphs to improve a known algorithm speeding up the search for such a particular hamiltonian path in the reduced graph of B_k .

© 2015 Elsevier B.V. All rights reserved.

Let \mathbb{Z}_n be the set $\{1, \ldots, n\}$ and let $\binom{\mathbb{Z}_n}{k}$ be the family of all k-subsets of \mathbb{Z}_n . The Kneser graph K(n, k) has $\binom{\mathbb{Z}_n}{k}$ as its vertex set, and two k-subsets are adjacent if they are disjoint (Fig. 1(a) and (b)). The Kneser graph K(2k + 1, k) is called the *odd* graph and it is denoted by O_k (Fig. 1(a)). Notice that O_2 is the Petersen graph.

The bipartite Kneser graph B(n, k) has $\binom{\mathbb{Z}_n}{k} \cup \binom{\mathbb{Z}_n}{n-k}$ as its vertex set and an undirected edge $\{u, v\}$ represents that u either contains or is contained into v (Fig. 1(c)). The graph B(2k + 1, k) is isomorphic to the subgraph of the (2k + 1)-cube graph induced by the vertices having exactly k or (k + 1) ones. Hence, B(2k + 1, k) is also called the *middle levels graph*, and it is denoted by B_k .

A long standing conjecture due to Lovász [12] claims that every connected vertex-transitive graph has a hamiltonian path. For $n \ge 2k + 1$, the graphs K(n, k) and B(n, k) form well-studied families of connected vertex-transitive graphs, both $\binom{n-k}{k}$ -regular. A conjecture due to Biggs [1] claims that the odd graphs are hamiltonian for $k \ge 3$ and a related conjecture by Havel [8] claims that the middle-layers graph is hamiltonian. After more than 30 years, a proof of Havel's conjecture has been announced [14]. Note that, if the Kneser graph K(n, k) has a hamiltonian cycle $(A_1, A_2, A_3, \ldots, A_t)$ where t = |V(K(n, k))| and t is odd, then $(\overline{A_1}, A_2, \overline{A_3}, \ldots, A_{t-1}, \overline{A_t}, A_1, \overline{A_2}, A_3, \ldots, A_{t-1}, A_t)$ is a hamiltonian cycle of the bipartite Kneser graph B(n, k). It seems that Havel's conjecture might be slightly easier to prove than Biggs' conjecture, as unlike O_k the graph B_k is bipartite. At the moment, Biggs' conjecture remains unsolved.

http://dx.doi.org/10.1016/j.dam.2015.08.001 0166-218X/© 2015 Elsevier B.V. All rights reserved.

^{*} An extended abstract with some results of this paper was presented at LAGOS 2011, the Latin-American Algorithms, Graphs and Optimization Symposium, and appeared in Electron. Notes Discrete Math. 37 (2011) 291–296. Research partially supported by Brazilian agencies CNPq and FAPERJ. * Corresponding author.

E-mail addresses: andreia.gusmao@ufabc.edu.br (A.C.S. Gusmão), leticia.bueno@ufabc.edu.br (L.R. Bueno), hausen@compscinet.org (R.A. Hausen), celina@cos.ufrj.br (C.M.H. Figueiredo), luerbio@cos.ufrj.br (L. Faria).

		$\{1\} = \{1,2\}$
{1}	$\{1\} \longrightarrow \{4\}$	$\{2\}$ $\underbrace{\times}$ $\{2,3\}$
{2}	$\{2\} \longrightarrow \{3\}$	{3} { {1,3}
(a) $K(3, 1) = O_1$.	(b) <i>K</i> (4, 1).	$(c) B(3, 1) = B_1.$

Fig. 1. For k = 1, the graphs: (a) O_k ; (b) K(2k + 2, k), and; (c) B_k .

Apart from the Petersen graph, K(n, k) is hamiltonian if $n \ge (3k + 1 + \sqrt{5k^2 - 2k + 1})/2$, as reported in [5], or if $n \le 27$ (see [17] and references therein). Recently, Johnson [10] showed how to construct hamiltonian cycles in K(2k + i, k) for $k \le 2l + 1$ using hamiltonian cycles from $K(2k + \frac{i}{2}, k)$ for $k \le l$. This implies that, since O_k is hamiltonian for $3 \le k \le 13$, then K(2k+2, k) is hamiltonian for $k \le 27$ and, consequently, K(2k+4, k) is hamiltonian for $k \le 55$, and so on. In particular, for n = 2k + 1, it is known that O_k has a hamiltonian path or a hamiltonian cycle for $k \le 19$ [2,19]. The strategy from [10] cannot be applied to K(2k+3, k).

According to [16], in an unpublished work, Moews and Reid have determined that B_k is hamiltonian when $k \le 11$. In their work, they have used a reduced graph of the middle levels graph B_k , smaller than B_k by a factor of 2*n*. Part of the reduction technique had been previously used by Dejter [6]. Later, the reduced graph of the odd graph O_k was introduced [2]. It was proved that a particular hamiltonian path – we shall call it a *useful path* – in the reduced graph of B_k and O_k provides a hamiltonian cycle and path in B_k and O_k , respectively [2,16]. In the extended abstract [3], we have established that a useful path in the reduced graph of K(2k + 2, k) implies a hamiltonian cycle in both graphs B(2k + 2, k) and K(2k + 2, k). We observe that the announced proof [14] for Havel's conjecture does not use a useful path in a reduced graph, but instead proposes to modify a 2-factor locally by flippable pairs to get a single cycle.

At the moment, all known useful paths have been determined by heuristic algorithms. First, a heuristic [16] based on Pósa's path reversal strategy [15] was proposed to search for useful paths in the reduced graph of B_k , and had its running time further improved by Shields et al. [18]. Shimada and Amano [19] proposed a partition of the vertices of the reduced graph of B_k such that the existence of a path in each set of vertices implies a useful path. They have used the algorithm in [16] to determine useful paths for k = 18, 19.

In Section 2, we show that a useful path in the reduced graph of K(2k + 3, k) implies a hamiltonian path in K(2k + 3, k) for $k \equiv 1$ or 2 (mod 3). In Section 4, we propose an improvement on the algorithm in [16] speeding up the search for useful paths in the reduced graphs of the middle levels graph. Since a useful path in the reduced graph of the middle levels graph gives not only a hamiltonian cycle in B_k but also a hamiltonian path in the odd graph O_k , our results also contribute to Biggs' conjecture. This improvement is provided by using modular matchings [7], a 1-factorization of B_k that has been used in hamiltonicity results in Kneser and Bipartite Kneser graphs [4,9,13]. Experimental results are presented in Section 5. We conclude with some remarks and open problems in Section 6.

2. Useful paths in the reduced graph of K(2k + 3, k)

Consider \mathbb{Z}_n with arithmetical operations modulo *n*, and the vertices of K(n = 2k + i, k) as *k*-subsets of \mathbb{Z}_n .

Let $r_1 = \{1, 2, ..., k\}$ and $r_2 = \{2, 4, 6, ..., 2k = n - i\}$ two k-subsets of \mathbb{Z}_n . Given a set $A \subseteq \mathbb{Z}_n$ and an integer $\delta \in \mathbb{Z}$, define $A + \delta$ as the set $\{a + \delta : a \in A\}$ and \overline{A} as the set $\mathbb{Z}_n \setminus A$. Define the equivalence relation \sim as follows: given $A, B \subset \mathbb{Z}_n$, $B \sim A$ if either: (i) $B = A + \delta$ or (ii) $\overline{B} = A + \delta$. Refer to the equivalence class of A under \sim as $\sigma(A)$. We call A + 1 a *shift* of A, denoted by sh(A). Let $sh^0(A) = sh^n(A) = A$, and $sh^{t+1}(A) = sh^t(sh(A))$ for $t \ge 0$. If $C = (v_1, ..., v_j)$ is a path or a cycle, then let $sh^t(C) = (sh^t(v_1), ..., sh^t(v_j))$.

Given a graph *G*, the *reduced graph R*(*G*) is the graph obtained from *G* by identifying vertices that are equivalent according to \sim . More precisely, the vertices of *R*(*G*) are the equivalence classes $\sigma(v)$, for each $v \in V(G)$, and if $\{u, v\} \in E(G)$ then $\{\sigma(u), \sigma(v)\} \in E(R(G))$. Notice that if $\{u, v\} \in E(G)$ satisfies $u \sim v$, then the vertex $\sigma(u) \in V(R(G))$ has a loop. Fig. 2(a) shows the graph *R*(*K*(8, 3)), which is the reduced graph of *K*(8, 3) (Fig. 2(b)).

Shields and Savage [16] showed that the existence of a hamiltonian path that starts with vertex $\sigma(r_1)$ and ends with vertex $\sigma(r_2)$ in the graph $R(B_k)$ implies that B_k is hamiltonian. We refer to a hamiltonian path starting with $\sigma(r_1)$ and ending with $\sigma(r_2)$ as a *useful path*.

The property of a useful path in the reduced graph implying a hamiltonian cycle or path in connected Kneser and bipartite Kneser graphs seems to be true whenever k and n are relatively prime. It has already been proved that, for n = 2k + 1 or n = 2k + 2, a useful path in R(B(n, k)) implies a hamiltonian cycle or a hamiltonian path in B(n, k) and K(n, k) [3,2,16]. In this paper, we extend this result for K(2k+3, k). Lemmas 1 to 4 are generalizations from [3,2,16] for any $n \ge 2k + 1$, needed to achieve our results.

Lemma 1. For $n \ge 2k + 1$, R(K(n, k)) = R(B(n, k)).

Proof. The vertices of K(n, k) are the *k*-subsets of \mathbb{Z}_n , and the vertices of B(n, k) are the *k*-subsets and (n - k)-subsets of \mathbb{Z}_n . Since the complement of a *k*-subset is an (n - k)-subset, we have V(R(K(n, k))) = V(R(B(n, k))). There is an edge $\{A, B\} \in E(K(n, k))$ if $A \cap B = \emptyset$, and there is an edge $\{A, \overline{B}\} \in E(B(n, k))$ if $A \subset \overline{B}$. Since $n \ge 2k + 1$ and, therefore, $|A| \ne |\overline{B}|$, both statements are equivalent and E(R(K(n, k))) = E(R(B(n, k))). \Box

Download English Version:

https://daneshyari.com/en/article/419226

Download Persian Version:

https://daneshyari.com/article/419226

Daneshyari.com