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a b s t r a c t

For an assignment of numbers to the vertices of a graph, let S[u] be the sum of the labels of
all the vertices in the closed neighborhood of u, for a vertex u. Such an assignment is called
closed distinguishing if S[u] ≠ S[v] for any two adjacent vertices u and v unless the closed
neighborhoods of u and v coincide. In this note we investigate dis[G], the smallest integer
k such that there is a closed distinguishing labeling of G using labels from {1, . . . , k}. We
prove that dis[G] ≤ ∆2

−∆+1, where ∆ is the maximum degree of G. This result is sharp.
We also consider a list-version of the function dis[G] and give a number of related results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

One of the important tasks in network studies is to be able to identify and distinguish their elements, e.g. vertices, using
local substructures and small labels. Among the multiple ways to achieve this, one of the most natural ones is to distinguish
vertices by the sums of labels in their neighborhoods.

Formally, for a graph G, the open neighborhood of a vertex v is denoted N(v) and the closed neighborhood is denoted
N[v]. We say that an assignment of numbers (labels) to the vertices of G is closed distinguishing if the sum of labels of the
vertices in N[v] differs from the sum of labels of the vertices in N[u] for any adjacent vertices u and v unless N[u] = N[v].
Let dis[G] be the smallest integer k such that there is a closed distinguishing assignment for G using integers from the set
{1, . . . , k}. Define also dis(G) using N(u) instead of N[u] and call the corresponding coloring open distinguishing. Note that
both values dis[G] and dis(G) exist because an assignment of n distinct powers of 2 to the n-vertex graph gives distinct sums
for any two subsets of vertices. A better upper bound on dis(G) might be derived from unpublished Theorem 1 of Norin,
see [7] for description. This and other results on dis(G) in planar graphs can be found in [7,11], where in particular it is con-
jectured that dis(G) is at most the chromatic number χ(G) of G. Recall that the chromatic number is the smallest number
assigned to the vertices of a graph such that no two adjacent vertices have the same color, a coloring number of a graph G
is the largest minimum degree of a subgraph of G plus 1, see [12].

Theorem 1 (S. Norin, [23], see [7]). Let G be a graph with chromatic number r and coloring number k. Let n1, . . . , nr be pairwise
coprime integers with ni ≥ k for i = 1, . . . , r. Then dis(G) ≤ n1n2...nr .
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While the asymptotic behavior of dis(G) remains a widely open problem, we focus on the dis[G] function in this note.
It is worth mentioning that vertex-distinguishing labelings have already been thoroughly investigated in the case of planar
graphs. By taking n1 = 7, n2 = 8, n3 = 9, and n4 = 11 in Theorem 1, it follows that dis(G) ≤ 5544 for a planar graph
G. In [7], this bound is improved to 468. Moreover, it is shown there that dis(G) ≤ 36 for a 3-colorable planar graph, that
dis(G) ≤ 4 for a planar graph of girth at least 13, and that dis(G) ≤ 2 if G is a tree. The large body of research in this area uses
not only the labels on vertices but also on the edges and the faces of a graph. One of the fascinating conjectures in the area
is so-called 1–2–3 Conjecture by Karoński, Łuczak, and Thomason posed in [22] as a question. It claims that it is sufficient to
use integers 1, 2 and 3 in order to label the edges of any non-trivial (of order ≥3) connected graph so that adjacent vertices
meet distinct sums of their incident labels. This conjecture is true e.g. for 3-colorable graphs, see [22], and it is known that
labels chosen from the set {1, 2, . . . , 5} are sufficient, as shown by Kalkowski, Karoński, and Pfender in [21]; see also [1,27],
and [2] for earlier results. A number of variations of distinguishing labelings of graphs have also been considered, see for
example [3–5,8–10,14–16,18,20,24–26,28]. See also a survey on graph labelings by Gallian [17].

In this note we initiate the study of dis[G], provide the sharp upper bound on this parameter in terms of the maximum
degree of a graph and several related results. Our main theorem is stated in a general setting of list-colorings. Assume that
every vertex is endowed with a list L(v) ⊆ R of available labels. Let disℓ[G] (disℓ(G)) be the smallest k such that for every
list assignment with |L(v)| ≥ k for all v ∈ V (G) there is a closed (open) distinguishing assignment giving every vertex v a
label from its list and χℓ(G) is the smallest integer k such that for every list assignment L with |L(v)| ≥ k there is a proper
vertex coloring c with c(v) ∈ L(v) for all v ∈ V . Trivially, for complete graph Kn we have disℓ[Kn] = dis[Kn] = 1 and
disℓ(Kn) = dis(Kn) = χℓ(Kn) = n.

Below we formulate our results. We prove them in Section 2.

Theorem 2. Let ∆ ≥ 2 be an integer and G be a graph with ∆(G) = ∆. Then
• dis[G] ≤ disℓ[G] ≤ ∆2

− ∆ + 1.
• For every ∆, there is a graph G such that dis[G] ≥ (1 − o(1))∆2.
• There are infinitely many values of ∆ for which G might be chosen so that dis[G] = ∆2

− ∆ + 1.

Theorem 3. Let ∆ ≥ 2, k ≥ 2 be integers and G be a graph with the coloring number k and ∆(G) = ∆. Then disℓ(G) ≤

(k − 1) · ∆ + 1 ≤ ∆2
+ 1.

The coloring number of a planar graph is at most 6. Hence, we have immediately the following Corollary.

Corollary 4. If G is a planar graph, then disℓ(G) ≤ 5 · ∆ + 1.

If ∆ ≤ 93 then this result gives a bound that is better than the best bound 468 known so far.
One of the challenging problems in the area is to determine how ‘dis’ function depends on the chromatic number of a

graph. Here, we show that the dis[G] function can be arbitrarily high even for bipartite graphs. In addition, we give some
upper bounds depending on the number of edges and degrees. Note that it is not known whether there is a function f such
that dis(G) ≤ f (χ(G)).

Note that it is essential here, that the labels are strictly positive integers. Indeed, if we could use 0 as a label, the situation
becomes easy for most bipartite graphs. Assigning 0 to all the vertices of one partite set and a label 1 to all other vertices,
gives an open and a closed distinguishing coloring of any bipartite graph inwhich the vertices in one partite set have degrees
at least 2.

Theorem 5. • Let G be a bipartite graph with partite sets A and B which is not a star. Let, for X ∈ {A, B}, ∆X = maxx∈X d(x)
and δX,2 = minx∈X,d(x)≥2 d(x), where d(x) denotes the degree of x in G. Then

dis[G] ≤ min

c


|E(G)|,


∆A − 1
δB,2 − 1


+ 1,


∆B − 1
δA,2 − 1


+ 1


,

where c is some constant.
• For every cycle Cn of length n ≥ 4, disℓ[Cn] = dis[Cn] = χ(Cn).
• For any positive integer k, there is a bipartite graph G such that dis[G] > k.

In case of trees we provide results for list, modulo p, and ordinary sum-distinguishing numbers.

Theorem 6. Let T ≠ K2 be a tree.
• We have disℓ[T ] ≤ 3 and dis[T ] ≤ 2.
• If L(v), v ∈ V (T ), are lists of 2 positive numbers each, then T has a closed distinguishing labeling from these lists.
• Let p ≥ 4 be an integer. There exists a labeling w : V (T ) → {1, 2, 3} such that


u∈N[x] w(u) ≢


v∈N[y] w(v) (mod p) for

all edges xy ∈ E(T ).

We say that a forest is strong if it does not have a K2 component.

Corollary 7. Let G be a graph whose edges are covered by k induced strong forests. Let p1, . . . , pk be pairwise relatively prime
integers, each at least 4. Then dis[G] ≤ p1p2 . . . pk.
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