Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/dam)

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

B[a](#page-0-0)hareh Bafandeh^a, Dara Moazzami [b,](#page-0-1)*, Amin Ghodousian ^{[b](#page-0-1)}

^a *University of Tehran, Department of Algorithms and Computation, Iran*

^b *University of Tehran, College of Engineering, Department of Engineering Science, Iran*

a r t i c l e i n f o

Article history: Received 29 March 2013 Received in revised form 6 September 2014 Accepted 20 October 2015 Available online 20 February 2016

Keywords: Edge-tenacity Planar graph Balancity

a b s t r a c t

The first-order edge-tenacity $T_1(G)$ of a graph *G* is defined as

$$
T_1(G) = \min\left\{\frac{|X| + \tau(G - X)}{\omega(G - X) - 1}\right\}
$$

where the minimum is taken over every edge-cutset *X* that separates *G* into $\omega(G - X)$ components, and by $\tau(G - X)$ we denote the order (the number of edges) of a largest component of $G - X$.

The objective of this paper is to study this concept of edge-tenacity and determining this quantity for some special classes of graphs. We calculate the first-order edge-tenacity of a complete *n*-partite graph. We shall obtain the first-order edge-tenacity of maximal planar graphs, maximal outerplanar graphs, and *k*-trees. Let *G* be a graph of order *p* and size *q*, we shall call the least integer *r*, $1 \le r \le p-1$, with $T_r(G) = \frac{q}{p-r}$ the balancity of *G* and denote it by *b*(*G*). Note that the balancity exists since $T_r(G) = \frac{q}{p-r}$ if $r = p - 1$. In general, it is difficult to determine the balancity of a graph. In this paper, we shall first determine the balancity of a special class of graphs and use this to find an upper bound for the balancity of an arbitrary graph.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, our terminology will be standard except as indicated. We use $V(G)$ and $\omega(G)$ to denote the vertex set and number of components in a graph *G*, respectively. The concept of tenacity of a graph *G* was introduced in [\[6,](#page--1-0)[7\]](#page--1-1), as a useful measure of the ''vulnerability'' of *G*. In [\[7\]](#page--1-1) Cozzens et al. calculated tenacity of the first and second case of the Harary Graphs. In $[14]$ we showed a complete proof for case three of the Harary Graphs. In $[16]$, we compared integrity, connectivity, binding number, toughness, and tenacity for several classes of graphs. The results suggest that tenacity is a most suitable measure of stability or vulnerability in that for many graphs it is best able to distinguish between graphs that intuitively should have different levels of vulnerability. In [\[1](#page--1-4)[,4,](#page--1-5)[5,](#page--1-6)[11–13,](#page--1-7)[15](#page--1-8)[,16,](#page--1-3)[18](#page--1-9)[,19,](#page--1-10)[17](#page--1-11)[,20,](#page--1-12)[21](#page--1-13)[,14,](#page--1-2)[8,](#page--1-14)[24](#page--1-15)[,25,](#page--1-16)[32](#page--1-17)[,30,](#page--1-18)[31](#page--1-19)[,29,](#page--1-20)[28](#page--1-21)[,33\]](#page--1-22), the authors studied more about this new invariant. The tenacity of a graph *G*, *T*(*G*), is defined by *T*(*G*) = $min\{\frac{|S|+m(G-S)}{\omega(G-S)}\}$, where the minimum is taken over all vertex cutsets *S* of *G*. We define *m*(*G*−*S*) to be the number of the vertices in a largest component of the graph *G* − *S*, and ω(*G* − *S*) be the number of components of *G* − *S*. A connected graph *G* is called *T* -tenacious if $|S| + m(G - S) \geq T\omega(G - S)$ holds for any subset *S* of vertices of *G* with $\omega(G - S) > 1$. If *G* is not complete, then there is a largest *T* such that *G* is *T* -tenacious; this *T* is the tenacity of *G*. On the other hand, a complete graph contains no vertex

<http://dx.doi.org/10.1016/j.dam.2015.10.027> 0166-218X/© 2015 Elsevier B.V. All rights reserved.

[∗] Correspondence to: School of Computer Sciences, Institute for Research in Fundamental Sciences (IPM), P.O.Box:19395-5746, Tehran, Iran. *E-mail address:* dmoazzami@ut.ac.ir (D. Moazzami).

cutset and so it is *T*-tenacious for every *T*. Accordingly, we define $T(K_p) = \infty$ for every $p (p \ge 1)$. A set $S \subseteq V(G)$ is said to be a *T*-set of *G* if $T(G) = \frac{|S| + m(G - S)}{\omega(G - S)}$.

The Mix-tenacity $T_m(G)$ of a graph *G* is defined as

$$
T_m(G) = \min_{A \subseteq E(G)} \left\{ \frac{|A| + m(G - A)}{\omega(G - A)} \right\}
$$

where *m*(*G* − *A*) denotes the order (the number of vertices) of a largest component of *G* − *A* and ω(*G* − *A*) is the number of components of *G* − *A*. Cozzens et al. in [\[6\]](#page--1-0), called this parameter Edge-tenacity, but Moazzami changed the name of this parameter to Mix-tenacity. It seems Mix-tenacity is a better name for this parameter. *T* (*G*) and *Tm*(*G*) turn out to have interesting properties.

After the pioneering work of Cozzens, Moazzami, and Stueckle in [\[6](#page--1-0)[,7\]](#page--1-1), several groups of researchers have investigated tenacity, and its related problems. In [\[24\]](#page--1-15) and [\[25\]](#page--1-16) Piazza et al. used the *Tm*(*G*) as Edge-tenacity. But this parameter is a combination of cutset *A* ⊆ *E*(*G*) and the number of vertices of a largest component, *m*(*G*−*A*). It may be observed that in the definition of $T_m(G)$, the number of edges removed is added to the number of vertices in a largest component of the remaining graph. Also this parameter did not seem very satisfactory for Edge-tenacity. Thus Moazzami and Salehian introduced a new measure of vulnerability, the Edge-tenacity, $T_e(G)$, in [\[20\]](#page--1-12). The Edge-tenacity $T_e(G)$ of a graph *G* is defined as

$$
T_e(G) = \min_{A \subseteq E(G)} \left\{ \frac{|A| + \tau(G - A)}{\omega(G - A)} \right\}
$$

where $\tau(G - A)$ denotes the order (the number of edges) of a largest component of $G - A$ and $\omega(G - A)$ is the number of components of *G* − *A*. This new measure of vulnerability involves edges only and thus is called the Edge-tenacity. Since 1992 there were several interesting questions. But the question ''How difficult is it to recognize *T* -tenacious graphs?'' has remained an interesting open problem for some time. The question was first raised by Moazzami in [\[15\]](#page--1-8). Our purpose in [\[8\]](#page--1-14) was to show that for any fixed positive rational number *T* , it is *NP*-hard to recognize *T* -tenacious graphs. To prove this we showed that it is *NP*-hard to recognize *T* -tenacious graphs by reducing a well-known *NP*-complete variant of INDEPENDENT SET.

For an integer k , $1 \leq k \leq |V(G)| - 1$, we define the *k*-order edge-tenacity of a graph *G* as

$$
T_k(G) = \min\left\{\frac{|X| + \tau(G - X)}{\omega(G - X) - k} | X \subseteq E(G) \text{ and } \omega(G - X) > k\right\}
$$

where the minimum is taken over all edge-cutset *X* of *G* with $\omega(G - X) > k$.

In [\[22\]](#page--1-23) and [\[27\]](#page--1-24), respectively, Nash-Williams and Tutte proved the following theorem.

Theorem A. *A connected graph G has s edge-disjoint spanning trees if and only if*

 $|X|$ ≥ *s*(ω (*G* − *X*) − 1) *for each X* ⊆ *E*(*G*).

Thus, as an immediate consequence we have:

Theorem 1. *If a connected graph G has s edge-disjoint spanning trees then*

 $|X| + \tau(G - X) > s(\omega(G - X) - 1)$ *for each* $X \subseteq E(G)$.

Motivated by this result, we can introduce the following corollary.

Corollary 1. If a graph G has s edge-disjoint spanning trees then $T_1(G) > s$.

Corollary 2. Let G be a graph of order p and size q and let k be an integer with $1 \leq k \leq p-1$, then $T_k(G) \leq \frac{q}{p-k}$.

Conjecture. *The first-order edge-tenacity of a graph is* NP*-complete.*

It is not clear whether the first-order edge-tenacity of a graph can be computed in polynomial time. However, the maximum number of edge-disjoint spanning trees in a graph can be computed in polynomial time by matroid partitioning algorithms ($[9]$ see also $[26]$), and so by [Corollary 1](#page-1-0) the first-order edge-tenacity of a graph can be very closely approximated.

The objective of this paper is to examine and study various classes of graphs for which their first-order edge-tenacity can be readily determined.

We first state the following result:

Theorem 2. Let G be a graph. Then $\frac{|E(G)|}{(|V(G)|-1)} \le \frac{|X|+ \tau(G-X)}{\omega(G-X)-1}$ for every edge-cutset X of G if and only if $\frac{|E(H)|}{(|V(H)-1|)} \le \frac{|E(G)|}{(|V(G)|-1)}$ + τ (*G*−*X*) |*V*(*G*)|−ω(*G*−*X*) *for every subgraph H of G.*

Download English Version:

<https://daneshyari.com/en/article/419229>

Download Persian Version:

<https://daneshyari.com/article/419229>

[Daneshyari.com](https://daneshyari.com)