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a b s t r a c t

The first-order edge-tenacity T1(G) of a graph G is defined as

T1(G) = min


|X | + τ(G − X)

ω(G − X) − 1


where the minimum is taken over every edge-cutset X that separates G into ω(G − X)
components, and by τ(G − X) we denote the order (the number of edges) of a largest
component of G − X .

The objective of this paper is to study this concept of edge-tenacity and determining this
quantity for some special classes of graphs. We calculate the first-order edge-tenacity of a
complete n-partite graph. We shall obtain the first-order edge-tenacity of maximal planar
graphs, maximal outerplanar graphs, and k-trees. Let G be a graph of order p and size q, we
shall call the least integer r , 1 ≤ r ≤ p−1, with Tr (G) =

q
p−r the balancity of G and denote

it by b(G). Note that the balancity exists since Tr (G) =
q

p−r if r = p − 1. In general, it is
difficult to determine the balancity of a graph. In this paper, we shall first determine the
balancity of a special class of graphs and use this to find an upper bound for the balancity
of an arbitrary graph.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, our terminology will be standard except as indicated.We use V (G) andω(G) to denote the vertex
set and number of components in a graph G, respectively. The concept of tenacity of a graph G was introduced in [6,7], as a
useful measure of the ‘‘vulnerability’’ of G. In [7] Cozzens et al. calculated tenacity of the first and second case of the Harary
Graphs. In [14]we showed a complete proof for case three of theHarary Graphs. In [16], we compared integrity, connectivity,
binding number, toughness, and tenacity for several classes of graphs. The results suggest that tenacity is a most suitable
measure of stability or vulnerability in that for many graphs it is best able to distinguish between graphs that intuitively
should have different levels of vulnerability. In [1,4,5,11–13,15,16,18,19,17,20,21,14,8,24,25,32,30,31,29,28,33], the authors
studied more about this new invariant. The tenacity of a graph G, T (G), is defined by T (G) = min{ |S|+m(G−S)

ω(G−S) }, where the
minimum is taken over all vertex cutsets S of G. We definem(G− S) to be the number of the vertices in a largest component
of the graph G − S, and ω(G − S) be the number of components of G − S. A connected graph G is called T -tenacious if
|S| + m(G − S) ≥ Tω(G − S) holds for any subset S of vertices of G with ω(G − S) > 1. If G is not complete, then there
is a largest T such that G is T -tenacious; this T is the tenacity of G. On the other hand, a complete graph contains no vertex
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cutset and so it is T -tenacious for every T . Accordingly, we define T (Kp) = ∞ for every p (p ≥ 1). A set S ⊆ V (G) is said to
be a T -set of G if T (G) =

|S|+m(G−S)
ω(G−S) .

The Mix-tenacity Tm(G) of a graph G is defined as

Tm(G) = min
A⊆E(G)


|A| + m(G − A)

ω(G − A)


where m(G − A) denotes the order (the number of vertices) of a largest component of G − A and ω(G − A) is the number
of components of G − A. Cozzens et al. in [6], called this parameter Edge-tenacity, but Moazzami changed the name of
this parameter to Mix-tenacity. It seems Mix-tenacity is a better name for this parameter. T (G) and Tm(G) turn out to have
interesting properties.

After the pioneering work of Cozzens, Moazzami, and Stueckle in [6,7], several groups of researchers have investigated
tenacity, and its related problems. In [24] and [25] Piazza et al. used the Tm(G) as Edge-tenacity. But this parameter is a
combination of cutset A ⊆ E(G) and the number of vertices of a largest component,m(G−A). It may be observed that in the
definition of Tm(G), the number of edges removed is added to the number of vertices in a largest component of the remaining
graph. Also this parameter did not seem very satisfactory for Edge-tenacity. Thus Moazzami and Salehian introduced a new
measure of vulnerability, the Edge-tenacity, Te(G), in [20]. The Edge-tenacity Te(G) of a graph G is defined as

Te(G) = min
A⊆E(G)


|A| + τ(G − A)

ω(G − A)


where τ(G − A) denotes the order (the number of edges) of a largest component of G − A and ω(G − A) is the number
of components of G − A. This new measure of vulnerability involves edges only and thus is called the Edge-tenacity. Since
1992 there were several interesting questions. But the question ‘‘How difficult is it to recognize T -tenacious graphs?’’ has
remained an interesting open problem for some time. The question was first raised by Moazzami in [15]. Our purpose in [8]
was to show that for any fixed positive rational number T , it is NP-hard to recognize T -tenacious graphs. To prove this we
showed that it isNP-hard to recognize T -tenacious graphs by reducing awell-knownNP-complete variant of INDEPENDENT
SET.

For an integer k, 1 ≤ k ≤ |V (G)| − 1, we define the k-order edge-tenacity of a graph G as

Tk(G) = min


|X | + τ(G − X)

ω(G − X) − k
|X ⊆ E(G) and ω(G − X) > k


where the minimum is taken over all edge-cutset X of Gwith ω(G − X) > k.

In [22] and [27], respectively, Nash-Williams and Tutte proved the following theorem.

Theorem A. A connected graph G has s edge-disjoint spanning trees if and only if

|X | ≥ s(ω(G − X) − 1) for each X ⊆ E(G).

Thus, as an immediate consequence we have:

Theorem 1. If a connected graph G has s edge-disjoint spanning trees then

|X | + τ(G − X) ≥ s(ω(G − X) − 1) for each X ⊆ E(G).

Motivated by this result, we can introduce the following corollary.

Corollary 1. If a graph G has s edge-disjoint spanning trees then T1(G) ≥ s.

Corollary 2. Let G be a graph of order p and size q and let k be an integer with 1 ≤ k ≤ p − 1, then Tk(G) ≤
q

p−k .

Conjecture. The first-order edge-tenacity of a graph is NP-complete.

It is not clear whether the first-order edge-tenacity of a graph can be computed in polynomial time. However, the
maximum number of edge-disjoint spanning trees in a graph can be computed in polynomial time by matroid partitioning
algorithms ([9] see also [26]), and so by Corollary 1 the first-order edge-tenacity of a graph can be very closely approximated.

The objective of this paper is to examine and study various classes of graphs for which their first-order edge-tenacity can
be readily determined.

We first state the following result:

Theorem 2. Let G be a graph. Then |E(G)|

(|V (G)|−1) ≤
|X |+τ(G−X)

ω(G−X)−1 for every edge-cutset X of G if and only if |E(H)|

(|V (H)−1|) ≤
|E(G)|

(|V (G)|−1) +

τ(G−X)

|V (G)|−ω(G−X)
for every subgraph H of G.
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