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a b s t r a c t

Birkhoff’s fundamental theorem on distributive lattices states that for every distributive
lattice L there is a poset PL whose lattice of down-sets is order-isomorphic to L. Let G(L)
denote the cover graph ofL. In this paper,we consider the following problems: supposewe
are simply givenPL. Howdowe compute the eccentricity of an element ofL inG(L)?How
about a center and the radius of G(L)?While eccentricity, center and radius computations
have long been studied for various classes of graphs, our problems are different in that
we are not given the graph explicitly; instead, we only have a structure that implicitly
describes the graph. By making use of the comparability graph of PL, we show that all
the said problems can be solved efficiently. One of the implications of these results is that
a center stable matching, a kind of fair stable matching, can be computed in polynomial
time.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A finite distributive lattice L = (L, ≤) is a partially ordered set (poset) where for any two elements x, y ∈ L, (i) theirmeet
x ∧ y or greatest lower bound exists, (ii) their join x ∨ y or least upper bound exists, and (iii) the meet and join operators
distribute over each other. The bottom element ofL is the unique element 0̂ such that 0̂ ≤ x for all x ∈ Lwhile its top element
is the unique element 1̂ such that x ≤ 1̂ for all x ∈ L. As an example, consider the factors of a positive integer z ordered ac-
cording to the divisibility relation. For any two factors f1 and f2, their meet is their greatest common factor, their join is their
least common multiple while the bottom and top elements of the lattice are 1 and z respectively. Many more objects form
a distributive lattice including the domino tilings of a polygon, the perfect matchings of a bipartite planar graph, alternating
sign matrices, etc. (see [25,10] and references therein).

Let P = (P, ≤) be a poset. A subset P ′ of P is a down-set or order ideal of P if whenever p ∈ P ′, all the predecessors of
p in P are also in P ′. Let D(P ) consist of the down-sets of P . It is not difficult to see that (D(P ), ⊆) is a distributive lattice.
An important characterization of distributive lattices states that the converse is true as well. (See Fig. 1 for an example.)

Theorem 1 (Birkhoff [3]). For every distributive latticeL, there is (up to isomorphism) a unique poset PL such that (D(PL), ⊆)
is order-isomorphic to L.

✩ A preliminary version of this paper appeared in the Proceedings of ICALP, 2011.
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Fig. 1. Consider the distributive lattice L on the left. The poset PL that encodes L is in the middle. In Birkhoff’s proof, PL is the subposet induced by the
join-irreducible elements of L — i.e. the elements whose in-degree is 1 in the Hasse diagram of L. The down-sets of PL (labeled without the curly braces)
ordered according to the subset relation are shown on the right. Clearly, L and (D(PL), ⊆) are isomorphic distributive lattices.

Given a graph G = (V , E), let d(v, u) denote the distance between v and u in G. The eccentricity of v, ecc(v), is equal
to maxu d(v, u). The radius of G, rad(G), is equal to minv ecc(v) while the diameter of G, diam(G), is equal to maxv ecc(v).
A node whose eccentricity is equal to the radius of G is referred to as a center of G. A node that has the smallest total (or
average) distance from all other nodes of G is called amedian of G. To illustrate some of these concepts, consider the popular
game Six Degrees of Kevin Bacon. A person is given the name of an actor1 a, and the goal is to identify a sequence of at most
seven actors starting with a and ending with Kevin Bacon so that any two consecutive actors in the sequence have appeared
in a movie together; i.e., actor a can ‘‘reach’’ Kevin Bacon by six steps or less. Graph theorists have long known that this is
just a game on the Actors’ graph where actors that have appeared in a movie are the vertices, and two actors are adjacent if
and only if they have appeared in a movie together. An inherent assumption of the game is that the radius of the graph is at
most six, and Kevin Bacon is one of its centers.

For a distributive lattice L, let G(L) denote the cover graph of L, the undirected Hasse diagram of L. In this paper, we
consider the following problems: given PL, is there an efficient algorithm for finding a center of G(L), expressed as a down-set
of PL? How about computing the radius of G(L)? Suppose we are additionally given an element of L expressed as a down-set
of PL, can we compute this element’s eccentricity efficiently?

The problems of computing eccentricities, radii, diameters and centers of graphs have a long and rich history startingwith
Jordan’s theorem in 1869 [19] which states that a tree either has one center or two centers that are adjacent to each other.
It is easy to compute the parameters in O(mn) time, where n is the number of vertices of the graph and m is the number of
edges, by running breadth-first search (BFS) from each node of the graph. Hence, most researchers’ goal is to beat this brute
force method. Seidel’s [28] and Chan’s [6] all-pairs shortest path algorithms for dense and sparse graphs respectively show
that these parameters can be computed in o(mn) time. Others like Roditty et al. [26] designed faster 3/2-approximation al-
gorithms for computing the parameters in sparse graphs. They also provided evidence that it is unlikely that their diameter
approximation result can be improved. For specific families of graphs, Corneil, Dragan and others [8,9] showed that Lex-BFS
(a variant of BFS) can either compute the diameter of a graph exactly or within one if the graph is chordal, interval, AT-free,
etc. On the other hand, Borassi et al. [5] developed heuristics that involve a small but related runs of BFS to determine the
diameter of real-world networks. We note though that our problems are quite different from the ones considered in these
papers because the graph under consideration is not given to us explicitly. Instead, we only have an auxiliary structure that
encodes the graph so we have to rely on a different set of techniques to solve the problems.
Motivation. Our interest in finding a center of G(L) given PL originated from our work on stable matchings. An instance I
of the stable marriage problem (SM) has n men and n women each of whom has a preference list that ranks members of the
opposite gender in a linear order. A matching is a set of n disjoint man–woman pairs; it is stable if there is no man–woman
pair who prefer each other over their partners in thematching. The goal of the problem is to find a stablematching of I if one
exists. A seminal result of Gale and Shapley in the 1960s [12] states that every SM instance has a stable matching that can
be computed in O(n2) time. Today, centralized stable matching algorithms are used to match medical residents to hospitals
[27] and students to schools [1,2].

An SM instance can have up to 2O(n) stable matchings [14]. It turns out, however, that the Gale–Shapley algorithm
outputs only two kinds: the man-optimal/woman-pessimal stable matching and the woman-optimal/man-pessimal stable
matching. In theman-optimal stable matching, everyman is matched to his best partner in all of the stable matchings while
simultaneously every woman is matched to her worst partner in all of the stable matchings; the woman-optimal/man-
pessimal stable matching has the opposite properties. Hence, in spite of the fact that the Gale–Shapley algorithm solves

1 Although we use the word ‘‘actor’’, the person can be male or female.
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