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a b s t r a c t

A network is said to be g-conditionally faulty if its every vertex has at least g fault-free
neighbors, where g ≥ 1. An n-dimensional folded hypercube FQn is a well-known variation
of an n-dimensional hypercube Qn, which can be constructed from Qn by adding an edge
to every pair of vertices with complementary addresses. FQn for any odd n is known to
be bipartite. In this paper, let FFv denote the set of faulty vertices in FQn, and let FFQn (e)
denote the set of faulty vertices which are incident to the end-vertices of any fault-free
edge e ∈ E(FQn). Then, under the 4-conditionally faulty and |FFQn (e)| ≤ n− 3, we consider
for the vertex-fault-tolerant cycles embedding properties in FQn − FFv , as follows:

1. For n ≥ 4, FQn−FFv contains a fault-free cycle of every even length from4 to 2n
−2|FFv |,

where |FFv | ≤ 2n − 7;
2. For n ≥ 4 being even, FQn − FFv contains a fault-free cycle of every odd length from

n + 1 to 2n
− 2|FFv | − 1, where |FFv | ≤ 2n − 7.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Choosing an appropriate interconnection network (network for short) is an important integral part of designing parallel
processing and distributed systems. There are a large number of network topologies which have been proposed. The
interested readersmay refer to [2,15,29] for extensive references. Among the proposednetwork topologies, the hypercube [3]
is a well-known network model which has several excellent properties, such as recursive structure, regularity, symmetry,
small diameter, short mean internode distance, low degree, and much smaller edge complexity, which are very important
for designing massively parallel or distributed systems [21]. Numerous variants of the hypercube have been proposed in
the literature [6,7,25]. One variant that has been the focus of a great deal of research is the folded hypercube, which can be
constructed from a hypercube by adding an edge to every pair of vertices that are the farthest apart, i.e., two vertices with
complementary addresses. The folded hypercube has been shown to be able to improve the system’s performance over a
regular hypercube in many measurements, such as diameter, fault diameter, connectivity, and so on [6,27].

An important feature of an interconnection network is its ability to efficiently simulate algorithms designed for other
architectures. Such a simulation can be formulated as network embedding. An embedding of a guest network G into a host
network H is defined as a one-to-one mapping f from the vertex set of G to the vertex set of H . Under f , an edge in G
corresponds to a path inH [21]. The embedding strategy allows us to emulate the effect of a guest network on a host network.
Then, algorithms developed for a guest network can also be executed well on the host network.

Cycles (rings), themost fundamental networks for parallel and distributed computation, are suitable for designing simple
algorithms with low communication costs. Numerous efficient algorithms designed on rings for solving various algebraic
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problems and graph problems can be found in [1,21]. Rings can be used as control/data flow structures for distributed
computing in arbitrary networks. These applications motivate the embedding of cycles in networks.

Since vertices and/or edges in a network may fail accidentally, it is demanded to consider for the fault-tolerance of a
network. Hence, the issue of fault-tolerant cycle embedding in an n-dimensional folded hypercube FQn has been studied in
[5,8,10,11,13,14,19,18,17,24,27,31]. Let FFv and FFe denote the sets of faulty vertices and faulty edges in FQn. DajinWang [27]
showed that FQn − FFe1contains a Hamiltonian cycle of length 2n if |FFe| ≤ n − 1. Ma [24] showed that FQn − FFe contains a
Hamiltonian cycle of length 2n where each vertex is incident to at least two fault-free edges, when |FFe| ≤ 2n − 3. Kuo [19]
extended the above result to show that FQn − FFe contains a cycle of every even length from 4 to 2n; if n ≥ 2 being even,
FQn − FFe contains a cycle of every odd length from n + 1 to 2n

− 1, when |FFe| ≤ 2n − 3. Xu [30] showed that every edge
of FQn lies on a cycle of every even length from 4 to 2n; if n is even, every edge of FQn also lies on a cycle of every odd length
from n + 1 to 2n

− 1. After that Xu [31] extended the above result to show that every fault-free edge of FQn − FFe lies on a
cycle of every even length from 4 to 2n; if n is even, every fault-free edge of FQn − FFe also lies on a cycle of every odd length
from n+ 1 to 2n

− 1, where |FFe| ≤ n− 1. Let f ∈ FFv be any faulty vertex in FQn. Hsieh [14] showed that FQn −{f } contains
a fault-free cycle of every even length from 4 to 2n

− 2 if n ≥ 3, and if n ≥ 2 being even, FQn −{f } contains a fault-free cycle
of every odd length from n + 1 to 2n

− 1. Recently, Cheng [5] showed that every fault-free edge of FQn − {f } lies on a cycle
of every odd length from n+ 1 to 2n

− 3, where n ≥ 2 being even. Kuo [17] extended Cheng’s [5] result to obtain that every
fault-free edge of FQn − {f } lies on a cycle of every even length from 4 to 2n

− 2 if n ≥ 3, and if n ≥ 2 being even, every
fault-free edge of FQn − {f } also lies on a cycle of every odd length from n + 1 to 2n

− 1. However, one should notice that
each component in a network may have independent reliability. That is, if components of a network fail independently, the
probability that all failures would be close to each other becomes low. Due to this motivation, Harary [9] first introduced the
idea of conditional connectivity. Later, Latifi [20] defined the conditional vertex-faultswhich require each vertex of a network
to have at least g fault-free neighbors, g ≥ 1. In this paper, we define that a network is g-conditionally faulty if its every
vertex has at least g fault-free neighbors, where g ≥ 1. Let FFQn(e) denote the set of faulty vertices which are incident to the
end-vertices of any fault-free edge e ∈ E(FQn). Then, under the 4-conditionally faulty and |FFQn(e)| ≤ n− 3, we consider for
the vertex-fault-tolerant cycles embedding properties in FQn − FFv , as follows:

1. For n ≥ 4, FQn − FFv contains a fault-free cycle of every even length from 4 to 2n
− 2|FFv|, where |FFv| ≤ 2n − 7;

2. For n ≥ 4 being even, FQn − FFv contains a fault-free cycle of every odd length from n + 1 to 2n
− 2|FFv| − 1, where

|FFv| ≤ 2n − 7.

Throughout this paper, a number of terms – network and graph, node and vertex, edge and link – are used
interchangeably. The remainder of this paper is organized as follows: in Section 2, we provide some necessary definitions
and notations. We present our main result in Section 3. Some concluding remarks are given in Section 4.

2. Preliminaries

A graph G = (V , E) is an ordered pair in which V is a finite set and E is a subset of {(u, v)|(u, v)is an unordered pair of V }.
We say that V is the vertex set and E is the edge set. We also use V (G) and E(G) to denote the vertex set and the edge
set of G, respectively. Two vertices u and v are adjacent if (u, v) ∈ E. For the edge e = (u, v), u and v are called the
end-vertices of e. We call u adjacent to v, and vice versa. A graph G = (V0 ∪ V1, E) is bipartite if V0 ∩ V1 = ∅ and
E ⊆ {(x, y)|x ∈ V0 and y ∈ V1}. A path P[v0, vk] = ⟨v0, v1, . . . , vk⟩ is a sequence of distinct vertices in which any two
consecutive vertices are adjacent. We call v0 and vk the end-vertices of the path. In addition, a path may contain a subpath,
denoted as ⟨v0, v1, . . . , vi, P[vi, vj], vj, vj+1, . . . , vk⟩, where P[vi, vj] = ⟨vi, vi+1, . . . , vj−1, vj⟩. The length of a path is the
number of edges on the path. A path ⟨v0, v1, . . . , vk⟩ forms a cycle if v0 = vk and v0, v1, . . . , vk−1 are distinct. For graph-
theoretic terminologies and notations not mentioned here, readers may refer to [28].

An n-dimensional hypercube Qn (n-cube for short) can be represented as an undirected graph such that V (Qn) consists
of 2n vertices which are labeled as binary strings of length n from 00 . . . 0  

n

to 11 . . . 1  
n

. Each edge e = (u, v) ∈ E(Qn)

connects two vertices u and v if and only if u and v differ in exactly one bit of their labels, i.e., u = bnbn−1 . . . bk . . . b1
and v = bnbn−1 . . . bk . . . b1, where bk is the one’s complement of bk, i.e., bk = 1 − i iff bk = i for i ∈ {0, 1}. We call that e
is an edge of dimension k. Clearly, each vertex connects to exactly n other vertices. In addition, there are 2n−1 edges in each
dimension and |E(Qn)| = n · 2n−1. Fig. 1 shows a 2-dimensional hypercube Q2 and a 3-dimensional hypercube Q3.

Let x = xnxn−1 . . . x1 and y = ynyn−1 . . . y1 be two n-bit binary strings; and let y = x(k), where 1 ≤ k ≤ n, if yk = 1 − xk
and yi = xi for all i ≠ k, 1 ≤ i ≤ n. In addition, let y = x̄ if yi = 1 − xi for all 1 ≤ i ≤ n. The Hamming distance dH(x, y)
between two vertices x and y is the number of different bits in the corresponding strings of the vertices. TheHammingweight
hw(x) of x is the number of i’s such that xi = 1. Note that Qn is a bipartite graph with two partite sets {x| hw(x)is odd} and
{x| hw(x)is even}. Let dQn(x, y) be the distance between two vertices x and y in graph Qn. Clearly, dQn(x, y) = dH(x, y).

An n-dimensional folded hypercube FQn can be constructed from an n-cube by adding an edge (also called complementary
edge) to every pair of vertices that are the farthest apart, i.e., for a vertex whose address is b = bnbn−1 . . . b1, it now has one

1 The graph obtained by deleting FFe from FQn .



Download English Version:

https://daneshyari.com/en/article/419237

Download Persian Version:

https://daneshyari.com/article/419237

Daneshyari.com

https://daneshyari.com/en/article/419237
https://daneshyari.com/article/419237
https://daneshyari.com

