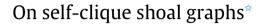
Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam



F. Larrión^a, M.A. Pizaña^b, R. Villarroel-Flores^{c,*}

^a Instituto de Matemáticas, Universidad Nacional Autónoma de México, 04510, México D.F., Mexico

^b Universidad Autónoma Metropolitana, Depto. de Ingeniería Eléctrica, Av. San Rafael Atlixco 186. Col Vicentina. Del. Iztapalapa, 09340,

México D.F., Mexico

^c Centro de Investigación en Matemáticas, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km. 4.5, 42184, Pachuca Hgo, Mexico

ARTICLE INFO

Article history: Received 9 July 2015 Received in revised form 8 January 2016 Accepted 20 January 2016 Available online 2 March 2016

Keywords: Clique graphs Self-clique graphs Constant link

ABSTRACT

The *clique graph* of a graph *G* is the intersection graph *K*(*G*) of its (maximal) cliques, and *G* is *self-clique* if *K*(*G*) is isomorphic to *G*. A graph *G* is *locally H* if the neighborhood of each vertex is isomorphic to *H*. Assuming that each clique of the regular and self-clique graph *G* is a triangle, it is known that *G* can only be *r*-regular for $r \in \{4, 5, 6\}$ and *G* must be, depending on *r*, a locally *H* graph for some $H \in \{P_4, P_2 \cup P_3, 3P_2\}$. The self-clique locally P_4 graphs are easy to classify, but only a family of locally *H* self-clique graphs was known for $H = P_2 \cup P_3$, and another one for $H = 3P_2$.

We study locally $P_2 \cup P_3$ graphs (i.e. *shoal graphs*). We show that all previously known shoal graphs were self-clique. We give a bijection from (finite) shoal graphs to 2-regular digraphs without directed 3-cycles. Under this translation, self-clique graphs correspond to self-dual digraphs, which simplifies constructions, calculations and proofs. We compute the numbers, for each $n \leq 28$, of self-clique and non-self-clique shoal graphs of order n, and also prove that these numbers grow at least exponentially with n.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction.

Our graphs are simple and, unless they clearly are not (as, e.g. $P_2 \cup P_3$), also connected. We deal mostly with finite graphs, but some infinite graphs are also considered. We will be explicit about finiteness or infiniteness when needed. A *clique* of a graph *G* is a maximal complete subgraph of *G*, or just its set of vertices, as we identify induced subgraphs with their vertex sets. The *clique graph* of *G* is the intersection graph K(G) of the cliques of *G*, and *G* is *self-clique* if *G* is connected and $K(G) \cong G$. The study of self-clique graphs began in [9] and has been pursued in [1–7,13–16]. A graph is *locally H* if the (open) neighborhood N(v) of any vertex $v \in G$ induces a subgraph isomorphic to *H*. We denote by P_n the path graph on *n* vertices and by kP_n the disjoint union of *k* copies of P_n .

This research was motivated by the paper [7], in which Chia and Ong propose the study of those self-clique graphs whose cliques have all the same size. For $n \ge 2$, they defined g(n) as the class of all, not necessarily finite, self-clique graphs having only cliques of n vertices. For n = 2 they proved that g(2) only contains the cycles C_n with $n \ge 4$, the one-way infinite path P_∞ and the two-way infinite path (or *infinite cycle*) C_∞ . After this, [7] focuses into g(3), a much tougher proposition. For our

* Corresponding author. E-mail addresses: paco@math.unam.mx (F. Larrión), map@xanum.uam.mx (M.A. Pizaña), rafaelv@uaeh.edu.mx (R. Villarroel-Flores). URL: http://xamanek.izt.uam.mx/map (M.A. Pizaña).

http://dx.doi.org/10.1016/j.dam.2016.01.013 0166-218X/© 2016 Elsevier B.V. All rights reserved.

[☆] Partially supported by SEP-CONACyT, grant 183210.

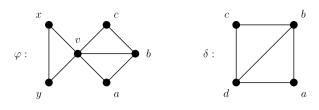


Fig. 2.1. A fish φ and a diamond δ in a shoal graph *G*.

purposes, their key results [7, Thm. 2, Cor. 1] are that any vertex v of a graph G in $\mathcal{G}(3)$ has, according to its degree, an open neighborhood N(v) which can only be one of the graphs P_2 , P_3 , P_4 , $P_2 \cup P_3$ or $3P_2$, and that any r-regular graph in $\mathcal{G}(3)$ must satisfy $r \in \{4, 5, 6\}$. In particular, a regular graph in $\mathcal{G}(3)$ must be locally H for some $H \in \{P_4, P_2 \cup P_3, 3P_2\}$.

The 4-regular graphs in $\mathcal{G}(3)$, i.e. the locally P_4 graphs in $\mathcal{G}(3)$, were classified in [7]. Hall had shown in [11] that the locally P_4 graphs are just the squared cycles C_{∞}^2 and C_n^2 for all integers $n \ge 7$. Being self-clique, they are all in $\mathcal{G}(3)$, as implied by [7, Thm. 4]. As for the remaining two cases (r = 5, 6) of regular graphs in $\mathcal{G}(3)$, only a family of examples was given for each type, and the question was raised in [7, §6] whether they could also be classified.

This work is devoted to the study of 5-regular graphs in $\mathcal{G}(3)$. In other words, we investigate which locally $P_2 \cup P_3$ graphs (to be renamed *shoal graphs* in the next section) are self-clique.

After a preliminary study of locally $P_2 \cup P_3$ graphs in Section 2, we show in Section 3 that their clique graphs are obtained by just flipping the diagonals of all their diamonds.

Hall [11] had proved by examples the existence of locally $P_2 \cup P_3$ graphs, and Chia an Ong's family of self-clique graphs of this type is a proper subfamily of Hall's [7, §3]. We shall prove that all graphs in Hall's family (which as far as we can tell were all the previously known locally $P_2 \cup P_3$ graphs) are indeed self-clique. In fact, Hall's graphs are "orientable", and our geometrical proof also works for the corresponding "non-orientable" analogues, see our Section 4.

In Section 5 we translate our problem into that of finding the self-dual *fishy digraphs* (i.e. balanced orientations of quartic graphs without directed 3-cycles). This greatly simplifies the analysis. The fishy digraph *D* associated to a locally $P_2 \cup P_3$ graph *G* has half the number of vertices of *G*, and its underlying graph is 4-regular, while *G* is 5-regular. Self-duality for *D* is simpler than self-cliqueness for *G*. Quartic graphs have been much more studied than locally $P_2 \cup P_3$ graphs, and there are available catalogs and computer programs to work with them.

Using fishy digraphs we give in Section 6 two new and easy families of locally $P_2 \cup P_3$ graphs, all of them self-clique. We now have examples of each even order greater than 12, which are all possible orders. Up to this point it could conceivably be thought that every locally $P_2 \cup P_3$ graph is self-clique. But our approach also simplified the exhaustive calculation of small examples by hand. This yielded that up to order 18 there are 16 locally $P_2 \cup P_3$ graphs, all of them self-clique, but of order 20 there are 114, and only 60 of them are self-clique. We continued these calculations using a computer and found that up to order 28 there are 3,536,172 locally $P_2 \cup P_3$ graphs and precisely 33,108 of them are self-clique (see Section 7).

We shall prove in Section 8 that the number of self-clique locally $P_2 \cup P_3$ graphs and the number of non-self-clique locally $P_2 \cup P_3$ both grow at least exponentially with the order. Also, that the numbers of self-clique and non-self-clique locally $P_2 \cup P_3$ graphs of order \aleph_0 is the cardinality of the continuum. It shall be quite clear that the examples constructed in this paper are just a puny fraction of the self-clique locally $P_2 \cup P_3$ graphs. In our view, these results show that self-clique locally $P_2 \cup P_3$ graphs are unclassifiable. This would solve in the negative the classification problem of 5-regular graphs in $\mathfrak{F}(3)$ posed in [7, §6, Question (i)]. But of course a formal proof of unclassifiability would require a formal definition of classifiability.

A vertex v of a graph G (i.e. $v \in G$) is universal if v is a neighbor of every other vertex in G. A cone is a graph G having a universal vertex, called also an *apex* of G. Whenever we speak of a *diamond in* G we mean an *induced* one. By $X \setminus Y$ we denote difference of sets, while G - H is a graph difference. A *digraph* is an oriented graph: the graph must be simple and each edge has to be oriented in *exactly one* direction, i.e. our digraphs have no loops, parallel arrows or anti-parallel arrows. The *opposite* or *dual* D^{op} of a digraph D has the same vertices as D, but all the arrows reversed: $i \rightarrow j$ in D^{op} if, and only if, $j \rightarrow i$ in D.

2. Shoals, fishes, heads and tails

In a locally $P_2 \cup P_3$ graph *G*, the closed neighborhood N[v] of each vertex $v \in G$ induces a subgraph as the graph φ in Fig. 2.1, which we call the *fish* of *v*. The triangle $\{v, x, y\}$ is the *tail* (of the fish) of *v*, and the diamond $\{v, a, b, c\}$ is the *head* (of the fish) of *v*. By dint of using these terms we ended up saying that a locally $P_2 \cup P_3$ graph is a *shoal graph*.

In the next three statements *G* is a shoal graph, and δ , δ' denote diamonds of *G*.

Lemma 2.1. No edge of δ forms a triangle with a vertex $x \in G \setminus \delta$.

Proof. Let the vertices of δ be labeled a, b, c and d as in Fig. 2.1. If x is adjacent to both a and b, then the (open) neighborhood $N_G(b)$ contains a P_4 , a contradiction. By symmetry, only the triangle $\{x, b, d\}$ remains possible, but with it $N_G(b)$ would contain a $K_{1,3}$. \Box

Download English Version:

https://daneshyari.com/en/article/419238

Download Persian Version:

https://daneshyari.com/article/419238

Daneshyari.com