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Arfidf—’ history: The clique graph of a graph G is the intersection graph K (G) of its (maximal) cliques, and G
Received 9 July 2015 is self-clique if K(G) is isomorphic to G. A graph G is locally H if the neighborhood of each
Received in revised form 8 January 2016 vertex is isomorphic to H. Assuming that each clique of the regular and self-clique graph G is
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atriangle, itis known that G can only be r-regular forr € {4, 5, 6} and G must be, depending
onr,alocally H graph for some H € {P4, P, U P3, 3P,}. The self-clique locally P4 graphs are
easy to classify, but only a family of locally H self-clique graphs was known for H = P, UP;,
Clique graphs and another one for H = 3P,. . _
Self-clique graphs We study locally P, U P5 graphs (i.e. shoal graphs). We show that all previously known
Constant link shoal graphs were self-clique. We give a bijection from (finite) shoal graphs to 2-regular
digraphs without directed 3-cycles. Under this translation, self-clique graphs correspond
to self-dual digraphs, which simplifies constructions, calculations and proofs. We compute
the numbers, for each n < 28, of self-clique and non-self-clique shoal graphs of order n,
and also prove that these numbers grow at least exponentially with n.
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1. Introduction.

Our graphs are simple and, unless they clearly are not (as, e.g. P, UPs), also connected. We deal mostly with finite graphs,
but some infinite graphs are also considered. We will be explicit about finiteness or infiniteness when needed. A clique
of a graph G is a maximal complete subgraph of G, or just its set of vertices, as we identify induced subgraphs with their
vertex sets. The clique graph of G is the intersection graph K (G) of the cliques of G, and G is self-clique if G is connected and
K(G) = G.The study of self-clique graphs began in [9] and has been pursued in [1-7,13-16]. A graph is locally H if the (open)
neighborhood N (v) of any vertex v € G induces a subgraph isomorphic to H. We denote by P, the path graph on n vertices
and by kP, the disjoint union of k copies of P,.

This research was motivated by the paper [7], in which Chia and Ong propose the study of those self-clique graphs whose
cliques have all the same size. For n > 2, they defined 4 (n) as the class of all, not necessarily finite, self-clique graphs having
only cliques of n vertices. For n = 2 they proved that 4(2) only contains the cycles C, with n > 4, the one-way infinite path
P, and the two-way infinite path (or infinite cycle) Co.. After this, [7] focuses into 4(3), a much tougher proposition. For our

* Partially supported by SEP-CONACyT, grant 183210.

* Corresponding author.
E-mail addresses: paco@math.unam.mx (F. Larrién), map@xanum.uam.mx (M.A. Pizafia), rafaelv@uaeh.edu.mx (R. Villarroel-Flores).
URL: http://xamanek.izt.uam.mx/map (M.A. Pizafia).

http://dx.doi.org/10.1016/j.dam.2016.01.013
0166-218X/© 2016 Elsevier B.V. All rights reserved.


http://dx.doi.org/10.1016/j.dam.2016.01.013
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2016.01.013&domain=pdf
mailto:paco@math.unam.mx
mailto:map@xanum.uam.mx
mailto:rafaelv@uaeh.edu.mx
http://xamanek.izt.uam.mx/map
http://xamanek.izt.uam.mx/map
http://xamanek.izt.uam.mx/map
http://xamanek.izt.uam.mx/map
http://xamanek.izt.uam.mx/map
http://xamanek.izt.uam.mx/map
http://dx.doi.org/10.1016/j.dam.2016.01.013

F. Larrion et al. / Discrete Applied Mathematics 205 (2016) 86-100 87

x c c b

y a d a

Fig. 2.1. Afish ¢ and a diamond § in a shoal graph G.

purposes, their key results [7, Thm. 2, Cor. 1] are that any vertex v of a graph G in §(3) has, according to its degree, an open
neighborhood N (v) which can only be one of the graphs P, P3, P4, P, U P3 or 3P,, and that any r-regular graph in ¢(3) must
satisfy r € {4, 5, 6}. In particular, a regular graph in §(3) must be locally H for some H € {P4, P, U P3, 3P,}.

The 4-regular graphs in §.(3), i.e. the locally P, graphsin §(3), were classified in [ 7]. Hall had shown in [ 11] that the locally
P4 graphs are just the squared cycles C2, and C? for all integers n > 7. Being self-clique, they are all in §(3), as implied by
[7, Thm. 4]. As for the remaining two cases (r = 5, 6) of regular graphs in 4(3), only a family of examples was given for each
type, and the question was raised in [7, §6] whether they could also be classified.

This work is devoted to the study of 5-regular graphs in 4(3). In other words, we investigate which locally P, U P; graphs
(to be renamed shoal graphs in the next section) are self-clique.

After a preliminary study of locally P, U P; graphs in Section 2, we show in Section 3 that their clique graphs are obtained
by just flipping the diagonals of all their diamonds.

Hall [11] had proved by examples the existence of locally P, U P3 graphs, and Chia an Ong’s family of self-clique graphs
of this type is a proper subfamily of Hall’s [7, §3]. We shall prove that all graphs in Hall’s family (which as far as we can tell
were all the previously known locally P, U P3 graphs) are indeed self-clique. In fact, Hall’s graphs are “orientable”, and our
geometrical proof also works for the corresponding “non-orientable” analogues, see our Section 4.

In Section 5 we translate our problem into that of finding the self-dual fishy digraphs (i.e. balanced orientations of quartic
graphs without directed 3-cycles). This greatly simplifies the analysis. The fishy digraph D associated to a locally P, U P3
graph G has half the number of vertices of G, and its underlying graph is 4-regular, while G is 5-regular. Self-duality for D is
simpler than self-cliqueness for G. Quartic graphs have been much more studied than locally P, U P5 graphs, and there are
available catalogs and computer programs to work with them.

Using fishy digraphs we give in Section 6 two new and easy families of locally P, U P5 graphs, all of them self-clique. We
now have examples of each even order greater than 12, which are all possible orders. Up to this point it could conceivably
be thought that every locally P, U P; graph is self-clique. But our approach also simplified the exhaustive calculation of small
examples by hand. This yielded that up to order 18 there are 16 locally P, U P5 graphs, all of them self-clique, but of order
20 there are 114, and only 60 of them are self-clique. We continued these calculations using a computer and found that up
to order 28 there are 3,536,172 locally P, U P3 graphs and precisely 33,108 of them are self-clique (see Section 7).

We shall prove in Section 8 that the number of self-clique locally P, U P; graphs and the number of non-self-clique locally
P,UP; both grow at least exponentially with the order. Also, that the numbers of self-clique and non-self-clique locally P, UP3
graphs of order Ry is the cardinality of the continuum. It shall be quite clear that the examples constructed in this paper are
just a puny fraction of the self-clique locally P, U P5 graphs. In our view, these results show that self-clique locally P, U P3
graphs are unclassifiable. This would solve in the negative the classification problem of 5-regular graphs in §(3) posed in
[7, §6, Question (i)]. But of course a formal proof of unclassifiability would require a formal definition of classifiability.

A vertex v of a graph G (i.e. v € G) is universal if v is a neighbor of every other vertex in G. A cone is a graph G having
a universal vertex, called also an apex of G. Whenever we speak of a diamond in G we mean an induced one. By X \ Y we
denote difference of sets, while G — H is a graph difference. A digraph is an oriented graph: the graph must be simple and
each edge has to be oriented in exactly one direction, i.e. our digraphs have no loops, parallel arrows or anti-parallel arrows.
The opposite or dual D°P of a digraph D has the same vertices as D, but all the arrows reversed: i — j in DP if, and only if,
j—iinD.

2. Shoals, fishes, heads and tails

In a locally P, U P5 graph G, the closed neighborhood N[v] of each vertex v € G induces a subgraph as the graph ¢ in
Fig. 2.1, which we call the fish of v. The triangle {v, x, y} is the tail (of the fish) of v, and the diamond {v, a, b, c} is the head
(of the fish) of v. By dint of using these terms we ended up saying that a locally P, U P; graph is a shoal graph.

In the next three statements G is a shoal graph, and 8, §’ denote diamonds of G.

Lemma 2.1. No edge of § forms a triangle with a vertexx € G\ 4.

Proof. Let the vertices of § be labeled a, b, c and d as in Fig. 2.1. If x is adjacent to both a and b, then the (open) neighbor-
hood Ng(b) contains a P4, a contradiction. By symmetry, only the triangle {x, b, d} remains possible, but with it Ng(b) would
containaky 3. O
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