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a b s t r a c t

The clique graph of a graph G is the intersection graph K(G) of its (maximal) cliques, and G
is self-clique if K(G) is isomorphic to G. A graph G is locally H if the neighborhood of each
vertex is isomorphic toH . Assuming that each clique of the regular and self-clique graphG is
a triangle, it is known thatG can only be r-regular for r ∈ {4, 5, 6} andGmust be, depending
on r , a locally H graph for some H ∈ {P4, P2 ∪ P3, 3P2}. The self-clique locally P4 graphs are
easy to classify, but only a family of locallyH self-clique graphswas known forH = P2∪P3,
and another one for H = 3P2.

We study locally P2 ∪ P3 graphs (i.e. shoal graphs). We show that all previously known
shoal graphs were self-clique. We give a bijection from (finite) shoal graphs to 2-regular
digraphs without directed 3-cycles. Under this translation, self-clique graphs correspond
to self-dual digraphs, which simplifies constructions, calculations and proofs. We compute
the numbers, for each n ≤ 28, of self-clique and non-self-clique shoal graphs of order n,
and also prove that these numbers grow at least exponentially with n.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction.

Our graphs are simple and, unless they clearly are not (as, e.g. P2∪P3), also connected.We deal mostly with finite graphs,
but some infinite graphs are also considered. We will be explicit about finiteness or infiniteness when needed. A clique
of a graph G is a maximal complete subgraph of G, or just its set of vertices, as we identify induced subgraphs with their
vertex sets. The clique graph of G is the intersection graph K(G) of the cliques of G, and G is self-clique if G is connected and
K(G) ∼= G. The study of self-clique graphs began in [9] and has been pursued in [1–7,13–16]. A graph is locally H if the (open)
neighborhood N(v) of any vertex v ∈ G induces a subgraph isomorphic to H . We denote by Pn the path graph on n vertices
and by kPn the disjoint union of k copies of Pn.

This researchwasmotivated by the paper [7], in which Chia and Ong propose the study of those self-clique graphs whose
cliques have all the same size. For n ≥ 2, they defined G(n) as the class of all, not necessarily finite, self-clique graphs having
only cliques of n vertices. For n = 2 they proved that G(2) only contains the cycles Cn with n ≥ 4, the one-way infinite path
P∞ and the two-way infinite path (or infinite cycle) C∞. After this, [7] focuses into G(3), a much tougher proposition. For our
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Fig. 2.1. A fish ϕ and a diamond δ in a shoal graph G.

purposes, their key results [7, Thm. 2, Cor. 1] are that any vertex v of a graph G in G(3) has, according to its degree, an open
neighborhood N(v) which can only be one of the graphs P2, P3, P4, P2 ∪ P3 or 3P2, and that any r-regular graph in G(3) must
satisfy r ∈ {4, 5, 6}. In particular, a regular graph in G(3) must be locally H for some H ∈ {P4, P2 ∪ P3, 3P2}.

The 4-regular graphs inG(3), i.e. the locally P4 graphs inG(3), were classified in [7]. Hall had shown in [11] that the locally
P4 graphs are just the squared cycles C2

∞
and C2

n for all integers n ≥ 7. Being self-clique, they are all in G(3), as implied by
[7, Thm. 4]. As for the remaining two cases (r = 5, 6) of regular graphs in G(3), only a family of examples was given for each
type, and the question was raised in [7, §6] whether they could also be classified.

This work is devoted to the study of 5-regular graphs in G(3). In other words, we investigate which locally P2∪ P3 graphs
(to be renamed shoal graphs in the next section) are self-clique.

After a preliminary study of locally P2∪P3 graphs in Section 2, we show in Section 3 that their clique graphs are obtained
by just flipping the diagonals of all their diamonds.

Hall [11] had proved by examples the existence of locally P2 ∪ P3 graphs, and Chia an Ong’s family of self-clique graphs
of this type is a proper subfamily of Hall’s [7, §3]. We shall prove that all graphs in Hall’s family (which as far as we can tell
were all the previously known locally P2 ∪ P3 graphs) are indeed self-clique. In fact, Hall’s graphs are ‘‘orientable’’, and our
geometrical proof also works for the corresponding ‘‘non-orientable’’ analogues, see our Section 4.

In Section 5 we translate our problem into that of finding the self-dual fishy digraphs (i.e. balanced orientations of quartic
graphs without directed 3-cycles). This greatly simplifies the analysis. The fishy digraph D associated to a locally P2 ∪ P3
graph G has half the number of vertices of G, and its underlying graph is 4-regular, while G is 5-regular. Self-duality for D is
simpler than self-cliqueness for G. Quartic graphs have been much more studied than locally P2 ∪ P3 graphs, and there are
available catalogs and computer programs to work with them.

Using fishy digraphs we give in Section 6 two new and easy families of locally P2 ∪ P3 graphs, all of them self-clique. We
now have examples of each even order greater than 12, which are all possible orders. Up to this point it could conceivably
be thought that every locally P2∪P3 graph is self-clique. But our approach also simplified the exhaustive calculation of small
examples by hand. This yielded that up to order 18 there are 16 locally P2 ∪ P3 graphs, all of them self-clique, but of order
20 there are 114, and only 60 of them are self-clique. We continued these calculations using a computer and found that up
to order 28 there are 3,536,172 locally P2 ∪ P3 graphs and precisely 33,108 of them are self-clique (see Section 7).

We shall prove in Section 8 that the number of self-clique locally P2∪P3 graphs and the number of non-self-clique locally
P2∪P3 both growat least exponentiallywith the order. Also, that the numbers of self-clique and non-self-clique locally P2∪P3
graphs of order ℵ0 is the cardinality of the continuum. It shall be quite clear that the examples constructed in this paper are
just a puny fraction of the self-clique locally P2 ∪ P3 graphs. In our view, these results show that self-clique locally P2 ∪ P3
graphs are unclassifiable. This would solve in the negative the classification problem of 5-regular graphs in G(3) posed in
[7, §6, Question (i)]. But of course a formal proof of unclassifiability would require a formal definition of classifiability.

A vertex v of a graph G (i.e. v ∈ G) is universal if v is a neighbor of every other vertex in G. A cone is a graph G having
a universal vertex, called also an apex of G. Whenever we speak of a diamond in G we mean an induced one. By X \ Y we
denote difference of sets, while G − H is a graph difference. A digraph is an oriented graph: the graph must be simple and
each edge has to be oriented in exactly one direction, i.e. our digraphs have no loops, parallel arrows or anti-parallel arrows.
The opposite or dual Dop of a digraph D has the same vertices as D, but all the arrows reversed: i → j in Dop if, and only if,
j→ i in D.

2. Shoals, fishes, heads and tails

In a locally P2 ∪ P3 graph G, the closed neighborhood N[v] of each vertex v ∈ G induces a subgraph as the graph ϕ in
Fig. 2.1, which we call the fish of v. The triangle {v, x, y} is the tail (of the fish) of v, and the diamond {v, a, b, c} is the head
(of the fish) of v. By dint of using these terms we ended up saying that a locally P2 ∪ P3 graph is a shoal graph.

In the next three statements G is a shoal graph, and δ, δ′ denote diamonds of G.

Lemma 2.1. No edge of δ forms a triangle with a vertex x ∈ G \ δ.

Proof. Let the vertices of δ be labeled a, b, c and d as in Fig. 2.1. If x is adjacent to both a and b, then the (open) neighbor-
hood NG(b) contains a P4, a contradiction. By symmetry, only the triangle {x, b, d} remains possible, but with it NG(b) would
contain a K1,3. �
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