Contents lists available at ScienceDirect

## **Discrete Applied Mathematics**

journal homepage: www.elsevier.com/locate/dam

# Algorithms for finding disjoint path covers in unit interval graphs

### Jung-Heum Park<sup>a</sup>, Joonsoo Choi<sup>b</sup>, Hyeong-Seok Lim<sup>c,\*</sup>

<sup>a</sup> School of Computer Science and Information Engineering, The Catholic University of Korea, Republic of Korea
<sup>b</sup> School of Computer Science, Kookmin University, Republic of Korea

<sup>c</sup> School of Electronics and Computer Engineering, Chonnam National University, Republic of Korea

#### ARTICLE INFO

Article history: Received 2 June 2014 Received in revised form 10 September 2015 Accepted 1 December 2015 Available online 19 January 2016

Keywords: Disjoint path Path cover Path partition Proper interval graph Graph algorithm

#### 1. Introduction

#### ABSTRACT

A many-to-many *k*-disjoint path cover (*k*-DPC for short) of a graph *G* joining the pairwise disjoint vertex sets *S* and *T*, each of size *k*, is a collection of *k* vertex-disjoint paths between *S* and *T*, which altogether cover every vertex of *G*. This is classified as paired, if each vertex of *S* must be joined to a specific vertex of *T*, or unpaired, if there is no such constraint. In this paper, we develop a linear-time algorithm for the UNPAIRED DPC problem of finding an unpaired DPC joining *S* and *T* given in a unit interval graph, to which the ONE-TO-ONE DPC and the ONE-TO-MANY DPC problems are reduced in linear time. Additionally, we show that the PAIRED *k*-DPC problem on a unit interval graph is polynomially solvable for any fixed *k*. © 2016 Elsevier B.V. All rights reserved.

Let *G* be a simple undirected graph, whose vertex and edge sets are denoted by V(G) and E(G), respectively. A *path cover* of graph *G* is a set of paths that altogether cover every vertex of *G*. Of special interest is the *vertex-disjoint path cover*, or simply called *disjoint path cover*, which has the following additional constraint: every vertex must belong to one and only one path. The disjoint path cover problem finds applications in many areas, such as software testing, database design, and code optimization [2,28]. In addition, the problem is concerned with applications where full utilization of network nodes is important [32].

The original disjoint path cover problem has no constraints on the positions of terminals or on the lengths of paths. The problem is to determine a disjoint path cover of a graph that uses the minimum number of paths. The minimum number is said to be the *path cover number* of the graph. The path cover (number) problem for a general graph is NP-complete [15], because the path cover number is equal to one if and only if the graph contains a hamiltonian path. Polynomial-time algorithms have been developed for some classes of graphs, for example, interval graphs [1], block graphs and bipartite permutation graphs [39], cographs [25], and distance-hereditary graphs [18].

In this paper, we are concerned with the disjoint path cover problem with prescribed sources and sinks, where each path should run from a *source* to a *sink*. The disjoint path cover made of *k* paths is called the *k*-disjoint path cover (*k*-DPC for short). Given two pairwise disjoint terminal sets, a source set  $S = \{s_1, \ldots, s_k\}$  and a sink set  $T = \{t_1, \ldots, t_k\}$ , of graph *G*, the *many-to-many k-DPC* is a disjoint path cover, each of whose paths joins a pair of source and sink. The disjoint path

\* Corresponding author. E-mail addresses: j.h.park@catholic.ac.kr (J.-H. Park), jschoi@kookmin.ac.kr (J. Choi), hslim@chonnam.ac.kr (H.-S. Lim).

http://dx.doi.org/10.1016/j.dam.2015.12.002 0166-218X/© 2016 Elsevier B.V. All rights reserved.







Fig. 1. A unit interval graph and its interval representation.

cover is *paired* if every source  $s_i$  must be matched with a specific sink  $t_i$ . On the other hand, it is *unpaired* if any permutation of sinks may be mapped bijectively to sources. There are two simpler variants: the *one-to-many k-DPC* for  $S = \{s\}$  and  $T = \{t_1, \ldots, t_k\}$ , whose paths join the common source to k distinct sinks; and the *one-to-one k-DPC* for  $S = \{s\}$  and  $T = \{t\}$ , whose paths always start from the common source and end up in the common sink. The disjoint path covers of this type have been studied for graphs, such as hypercubes [7,8,13,17,19], recursive circulants [21,22], hypercube-like graphs [20,23,32,33], k-ary n-cubes [37,40], cubes of connected graphs [29,30], and grid graphs [31].

Some other types of the disjoint path cover problem can also be found in the literature. Given a set of k sources,  $S = \{s_1, \ldots, s_k\}$ , in graph G, which is associated with k positive integers,  $l_1, \ldots, l_k$ , such that  $\sum_{i=1}^k l_i = |V(G)|$ , a prescribed-source-and-length k-DPC of G is a disjoint path cover composed of k paths, each of whose paths starts at source  $s_i$  and contains  $l_i$  vertices for  $i \in \{1, \ldots, k\}$ . For studies on this type of DPCs, refer to [10,27]. Given a graph G and a subset  $\mathcal{T}$  of k vertices of G, a k-fixed endpoint path cover of G with respect to  $\mathcal{T}$  is a set of vertex-disjoint paths that covers the vertices of G, such that the k vertices of  $\mathcal{T}$  are all terminals of the paths in the DPC. For details, refer to [2,3].

An *interval graph* is the intersection graph of family  $\pounds$  of intervals on the real line, where two vertices are connected with an edge if and only if their corresponding intervals intersect. The family  $\pounds$  is usually called an *interval representation* for the graph. A *unit interval graph* is an interval graph with an interval representation in which all the intervals have unit length. Refer to Fig. 1 for an example of a unit interval graph and its interval representation. In a similar way, a *proper interval graph* is an interval representation in which no interval properly contains another. In 1969, Roberts [34] proved that the classes of unit interval graphs and proper interval graphs coincide.

An ordering,  $(v_1, \ldots, v_n)$ , of the vertices of a graph of order *n* is *consecutive* if the vertices contained in a maximal clique are consecutive. A unit interval graph always admits a consecutive ordering because it is evident that the sequence of unit intervals sorted by their left endpoints corresponds to a consecutive order. See Fig. 1 again, where as well as  $(v_1, \ldots, v_{17})$ , the ordering  $(v_1, \ldots, v_{15}, v_{15}, v_{16}, v_{16})$  with  $v_{16}$  and  $v_{17}$  being switched is also consecutive. A unit interval representation and a consecutive ordering of a unit interval graph can be computed in time linear to the size of the graph [11,12]. The class of the unit interval graphs is known to admit polynomial solutions for many problems that are NP-complete for general graphs, such as vertex coloring, clique, independent set, etc. [16].

Given a source set  $S = \{s_1, \ldots, s_k\}$  and a sink set  $T = \{t_1, \ldots, t_k\}$  in a unit interval graph *G* of order *n*, we will develop an O(n)-time algorithm for determining the existence of an unpaired *k*-DPC joining *S* and *T* and producing an unpaired *k*-DPC, if it exists, provided that a consecutive ordering of the vertices of *G* and a unit interval representation for *G* are both available. We then provide a reduction of the GENERAL-DEMAND *k*-DPC [24] problem into the UNPAIRED *k*-DPC problem in O(n + k) time, so that the ONE-TO-ONE DPC and the ONE-TO-MANY DPC problems are solvable both in O(n) time, provided that the two structures required by the unpaired DPC algorithm are available. Finally, we present an algorithm for the PAIRED *k*-DPC problem on a unit interval graph, which runs in time polynomial in *n* for a fixed *k* (where *k* is regarded as a constant).

#### 2. Preliminaries

We begin with a consecutive ordering of the vertices of a unit interval graph *G*, from which many interesting properties have been deduced. Hereafter, we denote by *n* the order of *G*, i.e., n = |V(G)|.

**Theorem 1** (*Roberts* [34,35]). For a simple graph *G*, the following statements are equivalent:

- (a) *G* is a unit interval graph.
- (b) *G* is a proper interval graph.
- (c) There is a consecutive ordering,  $(v_1, \ldots, v_n)$ , of the vertices of *G*.

Download English Version:

# https://daneshyari.com/en/article/419242

Download Persian Version:

https://daneshyari.com/article/419242

Daneshyari.com