Minimum degree distance among cacti with perfect matchings

Zhongxun Zhu*, Yunchao Hong
College of Mathematics and Statistics, South Central University for Nationalities, Wuhan 430074, PR China

ARTICLE INFO

Article history:

Received 6 August 2015
Received in revised form 31 December 2015
Accepted 4 January 2016
Available online 3 February 2016

Keywords:

Degree distance
Cactus
Matching

Abstract

Let G be a connected graph with vertex set $V(G)$. The degree distance of G is defined as $D^{\prime}(G)=\sum_{x \in V(G)} d_{G}(x) D_{G}(x)$, where $d_{G}(x)$ is the degree of vertex $x, D_{G}(x)=$ $\sum_{u \in V(G)} d_{G}(u, x)$ and $d_{G}(u, x)$ is the distance between u and x. A connected graph G is called a cactus if any two of its cycles have at most one common vertex. Let $\xi(2 n, r)$ be the set of cacti of order $2 n$ with a perfect matching and r cycles. In this paper, we give the sharp lower bounds of degree distance among $\xi(2 n, r)$ and the corresponding extremal graphs are characterized.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let $G=(V(G), E(G))$ be a connected simple graph with vertex set $V(G)$ and edge set $E(G)$. Let $N\left(v_{i}\right)=\left\{u \mid u v_{i} \in E(G)\right\}$, $N\left[v_{i}\right]=N\left(v_{i}\right) \cup\left\{v_{i}\right\}$. Denote by $d_{G}\left(v_{i}\right)\left(=\left|N\left(v_{i}\right)\right|\right)$ the degree of vertex v_{i} of G. The number $\delta(G)=\min \left\{d_{G}(v) \mid v \in V(G)\right\}$ is the minimum degree of G, the number $\Delta(G)=\max \left\{d_{G}(v) \mid v \in V(G)\right\}$ is its maximum degree. For vertices $u, v \in V(G)$, the distance $d_{G}(u, v)$ is defined as the length of a shortest path between u and v in G. The eccentricity of a vertex x is $\operatorname{ecc}_{G}(x)=\max _{y \in V(G)} d_{G}(x, y)$. The degree distance $D^{\prime}(G)$ of G, which was introduced by Dobrynin and Kochetova [4] and Gutman [6], is defined as

$$
\begin{equation*}
D^{\prime}(G)=\sum_{x \in V(G)} d_{G}(x) D_{G}(x) \tag{1.1}
\end{equation*}
$$

where $d_{G}(x)$ is the degree of vertex $x, D_{G}(x)=\sum_{u \in V(G)} d_{G}(u, x)$. Besides as a topological index itself, the degree distance is also the non-trivial part of the molecular topological index (MTI) (or Schultz index) [12], which may be expressed as $D^{\prime}(G)+\sum_{u \in V(G)} d_{G}(u)^{2}$, for characterization of alkanes [6,10,9]. Some properties for the degree distance may be found, e.g., in $[10,9,16]$ in the text of MTI.

Up to now, many results on the degree distance of graphs are obtained. In [7], Hou and Chang obtained the maximum degree distance among unicyclic graphs on n vertices. Tomescu [13] deduced the minimum degree distance of unicyclic and bicyclic graphs, and the authors in [8] characterized n-vertex unicyclic graphs with girth k and having minimum and maximum degree distance and the maximum degree distance among bicyclic graphs, respectively. In [2] the authors reported the minimum degree distance of graphs with given order and size. In [14], Tomescu presented the graph with minimum degree distance among all connected graphs and disproved a conjecture posed in [4]. In [15] some properties of graphs having minimum degree distance in the class of connected graphs of order n and size $m \geq n-1$ were deduced.

[^0]

Fig. 1. The graph $G(2 n, r)$.

Dankelmann et al. [3] presented an asymptotically sharp upper bound of the degree distance of graphs with given order and diameter.

In this paper, we will further study the degree distance of cacti. We call G a cactus if it is connected and all of blocks of G are either edges or cycles, i.e., any two of its cycles have at most one common vertex. Denote $\xi(2 n, r)$ as the set of cacti of order $2 n$ with a perfect matching and r cycles and vertex set $\{1,2, \ldots, 2 n\}$. In this paper, we give the sharp lower bounds of degree distance among $\xi(2 n, r)$ and the corresponding extremal graphs are characterized.

In order to state our results, we introduce some notation and terminology. For other undefined notation we refer to Bollobás [1]. If $W \subset V(G)$, we denote by $G-W$ the subgraph of G obtained by deleting the vertices of W and the edges incident with them, $G[W]$ the induced subgraph of G. Similarly, if $E \subset E(G)$, we denote by $G-E$ the subgraph of G obtained by deleting the edges of E. If $W=\{v\}$ and $E=\{x y\}$, we write $G-v$ and $G-x y$ instead of $G-\{v\}$ and $G-\{x y\}$, respectively.

Now we give some lemmas that will be used in the proof of our main results.
Lemma 1.1 ([5]). Let $G \in \xi(2 n, 0)$, where $n \geq 2$. Then G has a pendent vertex whose unique neighbor is of degree two.
For a connected graph G with $u \in V(G)$, we define $D_{G}^{*}(u)=\sum_{x \in V(G)} d_{G}(x) d_{G}(x, u)$.
Lemma 1.2 ([8]). Let G be a graph of order n and v be a pendent vertex of G with $u v \in E(G)$. Then

$$
D^{\prime}(G)=D^{\prime}(G-v)+D_{G-v}(u)+D_{G}(v)+D^{*}(v) .
$$

Let G_{1}, G_{2} be two connected graphs, $G_{1} \cup G_{2}=\left(V\left(G_{1}\right) \cup V\left(G_{2}\right), E\left(G_{1}\right) \cup E\left(G_{2}\right)\right)$.
Lemma 1.3 ([8]). Let G be a connected graph with a cut-vertex v such that G_{1} and G_{2} are two connected subgraphs of G having v as the only common vertex and $G=G_{1} \cup G_{2}$. Let $n_{i}=\left|V\left(G_{i}\right)\right|$ and $m_{i}=\left|E\left(G_{i}\right)\right|$ for $i=1$, 2 . Then

$$
D^{\prime}(G)=D^{\prime}\left(G_{1}\right)+D^{\prime}\left(G_{2}\right)+2 m_{1} D_{G_{2}}(v)+2 m_{2} D_{G_{1}}(v)+\left(n_{1}-1\right) D_{G_{2}}^{*}(v)+\left(n_{2}-1\right) D_{G_{1}}^{*}(v) .
$$

Lemma 1.4 ([11]). If $G \in \xi(2 n, r), n \geq 3$, then each vertex of G is adjacent to at most one pendent vertex.

2. The minimum degree distance of cacti with perfect matching

Lemma 2.1. Let $G(2 n, r)$ be the graph as shown in Fig. 1. Then

$$
D^{\prime}(G(2 n, r))=20 n^{2}+2 n r-2 r^{2}-34 n+16
$$

Proof. Let $A=G(2 n, r)$. By (1.1),

$$
\begin{aligned}
D^{\prime}(G(2 n, r))= & \sum_{x \in V(A)} d_{A}(x) D_{A}(x) \\
= & \sum_{x \in V(A), d_{A}(x)=1} D_{A}(x)+(n+r) \sum_{x \in V(A), d_{A}(x)=n+r} D_{A}(x)+2 \sum_{x \in V(A), d_{A}(x)=2} D_{A}(x) \\
= & {[(5 n-r-4)+(n-r-1)(7 n-r-8)]+(n+r)(3 n-r-2) } \\
& +[(n-r-1)(10 n-2 r-12)+2 r(10 n-2 r-10)] \\
= & 20 n^{2}+2 n r-2 r^{2}-34 n+16 .
\end{aligned}
$$

https://daneshyari.com/en/article/419247

Download Persian Version:
https://daneshyari.com/article/419247

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: zzxun73@mail.scuec.edu.cn (Z. Zhu).

