Contents lists available at ScienceDirect

## **Discrete Applied Mathematics**

journal homepage: www.elsevier.com/locate/dam

# Rényi–Berlekamp–Ulam searching game with bi-interval queries and two lies



### Shu Min Xing<sup>a,\*</sup>, Wen An Liu<sup>b</sup>, Kun Meng<sup>b</sup>

<sup>a</sup> Department of Mathematics and Physics, Anyang Institute of Technology, Anyang 455000, People's Republic of China
<sup>b</sup> College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, People's Republic of China

#### ARTICLE INFO

Article history: Received 20 February 2014 Received in revised form 26 November 2015 Accepted 8 December 2015 Available online 9 January 2016

Keywords: Rényi–Ulam game Search Lie Bi-interval queries Worst-case

#### ABSTRACT

We consider the following searching game: there are two players, say Questioner and Responder. Responder chooses a number  $x \in S_n = \{1, 2, ..., n\}$ , Questioner has to find out the number x by asking *bi-interval queries* and Responder is allowed to lie at most two times throughout the game. The minimal number  $q^*(n)$  of bi-interval queries sufficient to find the unknown integer x is determined for all integers n. This solves completely Rényi–Berlekamp–Ulam searching game with bi-interval queries and two lies, partially solved by Mundici and Trombetta. Their solution applied only to the case when n is a power of 2.

© 2015 Elsevier B.V. All rights reserved.

#### 1. Introduction

*Rényi–Berlekamp–Ulam searching game*, abbreviated by RBU, was investigated by Rényi [22], Berlekamp [2] and Ulam [24], respectively. There are two players, called *Questioner* and *Responder*. Given a search space  $S_n = \{1, 2, ..., n\}$ , Responder thinks of a "target" integer  $x \in S_n$ , and Questioner is required to find out x by asking a series of queries " $x \in Q$ ?", where Q is a subset of  $S_n$ . Each query can be answered by "yes" or "no", and Responder is permitted to lie up to e times. The aim of RBU is to determine the smallest possible number needed to find the unknown number x. Pelc [19], Guzicki [12] and Deppe [9] have solved completely the cases e = 1, e = 2 and e = 3, respectively, based on previous work by Czyzowicz and Mundici [7,8], Negro and Sereno [17,18], Pelc [20], Hill [13], Cicalese [5] and Deppe [10].

RBU has many variants. In the terminology of search theory, RBU mentioned above belongs to the framework of binary adaptive search. Pelc [21] and Liu [14] solved completely 3-ary adaptive search with one lie and two lies, respectively. Aigner [1] and Malinowski [15] investigated the q-ary adaptive search with one lie. Cicalese and Vaccaro [6] studied the q-ary adaptive search with two lies. For more details, the reader can refer to Pelc [20], Hill [13] and Cicalese [3].

It is of interest to investigate the optimal strategies involving the simplest possible queries. To this purpose, the concepts of *interval queries* and *bi-interval queries* are introduced. Cicalese [4] proved that the optimal strategies exist by using *k-interval queries* for the case  $e \ge 1$  and  $n = 2^m$ , where *k* depends only on *e*. Mundici and Trombetta [16] gave the minimal number  $q^*(n)$  of bi-interval queries for the special case  $n = 2^m$  and e = 2. They also showed that this result does not hold for interval queries. In this paper, we will generalize Mundici and Trombetta's result from  $n = 2^m$  to arbitrary integer *n*.

\* Corresponding author. E-mail address: xxxsssmmm@126.com (S.M. Xing).

http://dx.doi.org/10.1016/j.dam.2015.12.007 0166-218X/© 2015 Elsevier B.V. All rights reserved.



#### 2. RBU with arbitrary queries and two lies

This section is devoted to RBU with arbitrary queries and two lies, i.e., each query is of the form " $x \in Q$ ?", where Q is a subset of  $S_n$ . Let q(n) be the smallest possible number of arbitrary queries sufficient to find the unknown number x, for e = 2 and a fixed positive integer n. In [12], Guzicki has given a complete solution to the exact values of q(n), but the representation of q(n) given by Guzicki is very complicated. We try to give a simple formula on the exact values of q(n) for all integers  $n \ge 2$ . This technique of obtaining the simple formula on the exact values of q(n) is necessary to determine the exact values of  $q^*(n)$ .

We will follow the notations and terminologies introduced by Guzicki [12]. After some number of queries, an intermediate stage of the game can be represented by a *state*  $\sigma = (A_0, A_1, A_2)$ , where  $A_i$  denotes the set of the elements of  $S_n$  associated with *i* lies,  $0 \le i \le 2$ , and  $A_0, A_1, A_2$  are pairwise disjoint. If Questioner chooses a query  $Q \subseteq S_n$  then Responder answers either "yes" or "no". By answering "yes", Responder assigns an additional lie to each element in  $S_n - Q$ , so that a resulting state  $\sigma_y = \sigma_y(Q)$  is obtained from  $\sigma$  by moving the elements corresponding to  $S_n - Q$  to the right one position. Similarly, by answering "no", Responder gets a resulting state  $\sigma_n = \sigma_n(Q)$  by moving the elements corresponding to Q to the right one position (see Guzicki [12]), i.e.,

$$\sigma_{y} = \sigma_{y}(Q) = (A_{0} \cap Q, (A_{0} - Q) \cup (A_{1} \cap Q), (A_{1} - Q) \cup (A_{2} \cap Q)),$$
  

$$\sigma_{n} = \sigma_{n}(Q) = (A_{0} - Q, (A_{0} \cap Q) \cup (A_{1} - Q), (A_{1} \cap Q) \cup (A_{2} - Q)).$$
(1)

By  $\sharp A$  we denote the *cardinality* of set A. Let  $a = \sharp A$ ,  $b = \sharp B$ ,  $c = \sharp C$ , the triple (a, b, c) is called *type* of  $\sigma = (A, B, C)$ . We will write  $\sharp \sigma = (a, b, c)$ , if necessary. A state  $\sigma = (A_0, A_1, A_2)$  is characterized by its type  $\sharp \sigma = (\sharp A_0, \sharp A_1, \sharp A_2)$ , i.e., two states  $\sigma = (A_0, A_1, A_2)$  and  $\sigma' = (A'_0, A'_1, A'_2)$  have the same minimal number of queries sufficient to find the unknown integer x if  $\sharp A_0 = \sharp A'_0, \sharp A_1 = \sharp A'_1$  and  $\sharp A_2 = \sharp A'_2$ . This technique has been used by many papers. See Cicalese [3].

Let  $\sigma = (A, B, C)$  be a state with type  $\pi = (a, b, c)$ . By  $\overrightarrow{q} = [x, y, z]$  we denote a query of  $\pi = (a, b, c)$ , i.e., a query Q consists of x, y and z elements of A, B and C, respectively. This query  $\overrightarrow{q} = [x, y, z]$  of  $\pi = (a, b, c)$  yields two resulting states  $\pi_y = \pi_y(\overrightarrow{q})$  and  $\pi_n = \pi_n(\overrightarrow{q})$ :

$$\pi_{y} = \pi_{y}(\vec{q}) = (x, a - x + b, b - y + x),$$
  

$$\pi_{n} = \pi_{n}(\vec{q}) = (a - x, x + b - y, y + c - z).$$
(2)

We use the notation  $\binom{k}{\leq m} = \sum_{i=0}^{m} \binom{k}{i}$ . The *q*-weight of  $\sigma$  with type  $\pi = (a, b, c)$  is defined by

$$w_q(\sigma) = w_q(\pi) = \begin{pmatrix} q \\ \le 2 \end{pmatrix} a + \begin{pmatrix} q \\ \le 1 \end{pmatrix} b + c.$$
(3)

Berlekamp [2] showed that if a state  $\sigma$  has a winning strategy with q queries then

$$w_q(\sigma) \le 2^q. \tag{4}$$

The number  $ch(\sigma) = ch(\pi) = min\{k \mid w_k(\sigma) \le 2^k\}$  is called the *character* of  $\sigma$  (or  $\pi$ ). It is easy to see that

$$w_k(\sigma) = w_{k-1}(\sigma_y) + w_{k-1}(\sigma_n),$$
  

$$w_k(\pi) = w_{k-1}(\pi_y) + w_{k-1}(\pi_n).$$
(5)

A query Q = (A', B', C') of state  $\sigma = (A, B, C)$  is called [i, j, k]-*like* if  $i = \sharp A', j = \sharp B'$  and  $k = \sharp C'$ . A state  $\sigma = (A, B, C)$  with type (a, b, c) is called *typical* if  $b \ge a - 1$  and  $c \ge k = ch(a, b, c)$ .

By the definitions of q(n) and character, we have  $q(n) \ge ch(S_n, \emptyset, \emptyset)$ . It is possible that q(n) does not equal to the character of the starting state, as q(n) depends on the state achieved after the first two queries. See Spencer [23]. Given an initial state  $\sigma = (S_n, \emptyset, \emptyset)$  with type  $\pi = (n, 0, 0)$ , and  $k = ch(\pi)$ .

 $\sigma = (S_n, \emptyset, \emptyset)$  with type  $\pi = (n, 0, 0)$ , and  $k = ch(\pi)$ . Let  $\pi_y = \pi_y(\overrightarrow{q}_1)$  and  $\pi_n = \pi_n(\overrightarrow{q}_1)$  be the resulting states yielded by any first query  $\overrightarrow{q}_1$ ;  $\pi_{yy}$  and  $\sigma_{yn}$  (resp.  $\pi_{ny}$  and  $\pi_{nn}$ ) be the resulting states yielded by any second query  $\overrightarrow{q}_2^y$  of  $\pi_y$  (resp.  $\overrightarrow{q}_2^n$  of  $\pi_n$ ), i.e.,

$$\pi_{yy} = (\pi_y)_y(\overrightarrow{q}_2^y), \qquad \pi_{yn} = (\pi_y)_n(\overrightarrow{q}_2^y), \qquad \pi_{ny} = (\pi_n)_y(\overrightarrow{q}_2^n), \qquad \pi_{nn} = (\pi_n)_n(\overrightarrow{q}_2^n).$$

After the first two queries  $(\vec{q}_1, \vec{q}_2)$  or  $(\vec{q}_1, \vec{q}_2)$ , we obtain one of four states  $\pi_{yy}, \pi_{yn}, \pi_{ny}$  and  $\pi_{nn}$ . We should try to choose the first two queries so that the biggest weight  $Z_{max} = \max\{w_{k-2}(u) \mid u \in \{\pi_{yy}, \pi_{yn}, \pi_{ny}, \pi_{ny}, \pi_{nn}\}\}$  can be as small as possible.

We choose the first two queries in the following way (this strategy coincides with Guzicki's strategy, see [12]): the first query  $\vec{q}_1 = (t, 0, 0)$ , where  $t = \lceil \frac{n}{2} \rceil$  ( $\lceil x \rceil$  denotes the smallest integer  $\ge x$ ) and let  $\pi_y^o$  and  $\pi_n^o$  be the resulting states yielded by  $\vec{q}_1$ ; the second queries  $\vec{q}_y^o$  for  $\pi_v^o$  and  $\vec{q}_n^o$  for  $\pi_v^o$  are given in Table 1.

by  $\vec{q}_1$ ; the second queries  $\vec{q}_2^y$  for  $\pi_y^o$  and  $\vec{q}_2^n$  for  $\pi_n^o$  are given in Table 1. Let  $\pi_{yy}^o, \pi_{yn}^o, \pi_{ny}^o, \pi_{nn}^o$  be the four resulting states yielded by the first two queries stated above, and  $Z_{max}^o = \max\{w_{k-2}(u) \mid u \in \{\pi_{yy}^o, \pi_{yn}^o, \pi_{ny}^o, \pi_{ny}^o, \pi_{nn}^o\}$ }. The Lemma 1 shows that  $Z_{max} \ge Z_{max}^o$ , i.e., the first two queries stated above are weight-optimal. Download English Version:

# https://daneshyari.com/en/article/419252

Download Persian Version:

https://daneshyari.com/article/419252

Daneshyari.com