Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/dam)

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Rényi–Berlekamp–Ulam searching game with bi-interval queries and two lies

Shu Min Xing™*, Wen An Liu^{[b](#page-0-2)}, Kun Meng^b

^a *Department of Mathematics and Physics, Anyang Institute of Technology, Anyang 455000, People's Republic of China* ^b *College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, People's Republic of China*

ARTICLE INFO

Article history: Received 20 February 2014 Received in revised form 26 November 2015 Accepted 8 December 2015 Available online 9 January 2016

Keywords: Rényi–Ulam game Search Lie Bi-interval queries Worst-case

a b s t r a c t

We consider the following searching game: there are two players, say Questioner and Responder. Responder chooses a number $x \in S_n = \{1, 2, ..., n\}$, Questioner has to find out the number *x* by asking *bi-interval queries* and Responder is allowed to lie at most two times throughout the game. The minimal number $q^*(n)$ of bi-interval queries sufficient to find the unknown integer *x* is determined for all integers *n*. This solves completely Rényi–Berlekamp–Ulam searching game with bi-interval queries and two lies, partially solved by Mundici and Trombetta. Their solution applied only to the case when *n* is a power of 2.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Rényi–Berlekamp–Ulam searching game, abbreviated by RBU, was investigated by Rényi [\[22\]](#page--1-0), Berlekamp [\[2\]](#page--1-1) and Ulam [\[24\]](#page--1-2), respectively. There are two players, called *Questioner* and *Responder*. Given a search space $S_n = \{1, 2, \ldots, n\}$, Responder thinks of a "target" integer $x \in S_n$, and Questioner is required to find out *x* by asking a series of queries " $x \in Q$?", where *Q* is a subset of *Sn*. Each query can be answered by ''yes'' or ''no'', and Responder is permitted to lie up to *e* times. The aim of RBU is to determine the smallest possible number needed to find the unknown number *x*. Pelc [\[19\]](#page--1-3), Guzicki [\[12\]](#page--1-4) and Deppe [\[9\]](#page--1-5) have solved completely the cases $e = 1$, $e = 2$ and $e = 3$, respectively, based on previous work by Czyzowicz and Mundici [\[7](#page--1-6)[,8\]](#page--1-7), Negro and Sereno [\[17](#page--1-8)[,18\]](#page--1-9), Pelc [\[20\]](#page--1-10), Hill [\[13\]](#page--1-11), Cicalese [\[5\]](#page--1-12) and Deppe [\[10\]](#page--1-13).

RBU has many variants. In the terminology of search theory, RBU mentioned above belongs to the framework of binary adaptive search. Pelc [\[21\]](#page--1-14) and Liu [\[14\]](#page--1-15) solved completely 3-ary adaptive search with one lie and two lies, respectively. Aigner [\[1\]](#page--1-16) and Malinowski [\[15\]](#page--1-17) investigated the *q*-ary adaptive search with one lie. Cicalese and Vaccaro [\[6\]](#page--1-18) studied the *q*-ary adaptive search with two lies. For more details, the reader can refer to Pelc [\[20\]](#page--1-10), Hill [\[13\]](#page--1-11) and Cicalese [\[3\]](#page--1-19).

It is of interest to investigate the optimal strategies involving the simplest possible queries. To this purpose, the concepts of *interval queries* and *bi-interval queries* are introduced. Cicalese [\[4\]](#page--1-20) proved that the optimal strategies exist by using *k*-interval queries for the case $e \ge 1$ and $n = 2^m$, where *k* depends only on *e*. Mundici and Trombetta [\[16\]](#page--1-21) gave the minimal number $q^*(n)$ of bi-interval queries for the special case $n=2^m$ and $e=2$. They also showed that this result does not hold for interval queries. In this paper, we will generalize Mundici and Trombetta's result from $n = 2^m$ to arbitrary integer *n*.

<http://dx.doi.org/10.1016/j.dam.2015.12.007> 0166-218X/© 2015 Elsevier B.V. All rights reserved.

Corresponding author. *E-mail address:* xxxsssmmm@126.com (S.M. Xing).

2. RBU with arbitrary queries and two lies

This section is devoted to RBU with arbitrary queries and two lies, i.e., each query is of the form " $x \in Q$?", where *Q* is a subset of *Sn*. Let *q*(*n*) be the smallest possible number of arbitrary queries sufficient to find the unknown number *x*, for $e = 2$ and a fixed positive integer *n*. In [\[12\]](#page--1-4), Guzicki has given a complete solution to the exact values of $q(n)$, but the representation of *q*(*n*) given by Guzicki is very complicated. We try to give a simple formula on the exact values of *q*(*n*) for all integers *n* ≥ 2. This technique of obtaining the simple formula on the exact values of *q*(*n*) is necessary to determine the exact values of *q* ∗ (*n*).

We will follow the notations and terminologies introduced by Guzicki [\[12\]](#page--1-4). After some number of queries, an intermediate stage of the game can be represented by a *state* $\sigma = (A_0, A_1, A_2)$, where A_i denotes the set of the elements of S_n associated with *i* lies, $0 \le i \le 2$, and A_0 , A_1 , A_2 are pairwise disjoint. If Questioner chooses a query $Q \subseteq S_n$ then Responder answers either ''yes'' or ''no''. By answering ''yes'', Responder assigns an additional lie to each element in *Sⁿ* − *Q*, so that a resulting state $\sigma_y = \sigma_y(Q)$ is obtained from σ by moving the elements corresponding to $S_n - Q$ to the right one position. Similarly, by answering "no", Responder gets a resulting state $\sigma_n = \sigma_n(Q)$ by moving the elements corresponding to Q to the right one position (see Guzicki [\[12\]](#page--1-4)), i.e.,

$$
\begin{aligned}\n\sigma_y &= \sigma_y(Q) = (A_0 \cap Q, (A_0 - Q) \cup (A_1 \cap Q), (A_1 - Q) \cup (A_2 \cap Q)), \\
\sigma_n &= \sigma_n(Q) = (A_0 - Q, (A_0 \cap Q) \cup (A_1 - Q), (A_1 \cap Q) \cup (A_2 - Q)).\n\end{aligned} \tag{1}
$$

By $\sharp A$ we denote the cardinality of set A. Let $a = \sharp A$, $b = \sharp B$, $c = \sharp C$, the triple (a, b, c) is called type of $\sigma = (A, B, C)$. We will write $\sharp \sigma = (a, b, c)$, if necessary. A state $\sigma = (A_0, A_1, A_2)$ is characterized by its type $\sharp \sigma = (\sharp A_0, \sharp A_1, \sharp A_2)$, i.e., two states $\sigma = (A_0, A_1, A_2)$ and $\sigma' = (A'_0, A'_1, A'_2)$ have the same minimal number of queries sufficient to find the unknown integer *x* if $\sharp A_0 = \sharp A'_0$, $\sharp A_1 = \sharp A'_1$ and $\sharp A_2 = \sharp \tilde{A'_2}$. This technique has been used by many papers. See Cicalese [\[3\]](#page--1-19).

Let $\sigma = (A, B, C)$ be a state with type $\pi = (a, b, c)$. By $\vec{q} = [x, y, z]$ we denote a query of $\pi = (a, b, c)$, i.e., a query Q consists of x, y and z elements of A, B and C, respectively. This query $\vec{q} = [x, y, z]$ of $\pi = (a, b, c)$ yields two resulting states $\pi_y = \pi_y(\vec{q})$ and $\pi_n = \pi_n(\vec{q})$:

$$
\pi_y = \pi_y(\vec{q}) = (x, a - x + b, b - y + x), \n\pi_n = \pi_n(\vec{q}) = (a - x, x + b - y, y + c - z).
$$
\n(2)

We use the notation $\binom{k}{\leq m}=\sum_{i=0}^m\binom{k}{i}.$ The q -weight of σ with type $\pi=(a,b,c)$ is defined by

$$
w_q(\sigma) = w_q(\pi) = \begin{pmatrix} q \\ \leq 2 \end{pmatrix} a + \begin{pmatrix} q \\ \leq 1 \end{pmatrix} b + c.
$$
 (3)

Berlekamp [\[2\]](#page--1-1) showed that if a state σ has a winning strategy with *q* queries then

$$
w_q(\sigma) \le 2^q. \tag{4}
$$

The number $\ch(\sigma)=\ch(\pi)=\min\{k\mid w_k(\sigma)\leq 2^k\}$ is called the *character* of σ (or π). It is easy to see that

$$
w_k(\sigma) = w_{k-1}(\sigma_y) + w_{k-1}(\sigma_n),
$$

\n
$$
w_k(\pi) = w_{k-1}(\pi_y) + w_{k-1}(\pi_n).
$$
\n(5)

A query $Q = (A', B', C')$ of state $\sigma = (A, B, C)$ is called [i, j, k]-like if $i = \sharp A', j = \sharp B'$ and $k = \sharp C'.$ A state $\sigma = (A, B, C)$ with type (a, b, c) is called *typical* if $b \ge a - 1$ and $c \ge k = \text{ch}(a, b, c)$.

By the definitions of $q(n)$ and character, we have $q(n) \geq ch(S_n, \emptyset, \emptyset)$. It is possible that $q(n)$ does not equal to the character of the starting state, as *q*(*n*) depends on the state achieved after the first two queries. See Spencer [\[23\]](#page--1-22). Given an initial state $\sigma = (S_n, \emptyset, \emptyset)$ with type $\pi = (n, 0, 0)$, and $k = \text{ch}(\pi)$.

Let $\pi_y = \pi_y(\vec{q}_1)$ and $\pi_n = \pi_n(\vec{q}_1)$ be the resulting states yielded by any first query \vec{q}_1 ; π_{yy} and σ_{yn} (resp. π_{ny} and $\pi_n = \pi_n(\vec{q}_1)$ be the resulting states yielded by any first query \vec{q}_1 ; $\frac{y}{2}$ of π_y (resp. \overrightarrow{q}_2 ⁿ $\frac{n}{2}$ of π_n), i.e.,

$$
\pi_{yy}=(\pi_y)_y(\overrightarrow{q}_2^y),\qquad \pi_{yn}=(\pi_y)_n(\overrightarrow{q}_2^y),\qquad \pi_{ny}=(\pi_n)_y(\overrightarrow{q}_2^n),\qquad \pi_{nn}=(\pi_n)_n(\overrightarrow{q}_2^n).
$$

After the first two queries (\overrightarrow{q}_1 , \overrightarrow{q}_2^y $\frac{y}{2}$) or $(\overrightarrow{q}_1, \overrightarrow{q}_2)$ σ_{2}''), we obtain one of four states $\pi_{yy},\pi_{yn},\pi_{ny}$ and $\pi_{nn}.$ We should try to choose the first two queries so that the biggest weight $\bar{Z}_{max} = \max\{w_{k-2}(u) \mid u \in \{\pi_{yy}, \pi_{yn}, \pi_{ny}, \pi_{nn}\}\}$ can be as small as possible.

We choose the first two queries in the following way (this strategy coincides with Guzicki's strategy, see [\[12\]](#page--1-4)): the first we choose the first two queries in the following way (this strategy concides with Guzicki's strategy, see [12]). the first
query $\vec{q}_1 = (t, 0, 0)$, where $t = \lceil \frac{n}{2} \rceil$ ([x] denotes the smallest integer $\geq x$) and let by \vec{q}_1 ; the second queries \vec{q}_2 $\frac{y}{2}$ for π_y^o and \overrightarrow{q}_2^n $\frac{n}{2}$ for π_n^o are given in [Table 1.](#page--1-23)

Let $\pi^o_{yy},\pi^o_{yn},\pi^o_{ny},\pi^o_{nn}$ be the four resulting states yielded by the first two queries stated above, and $Z^o_{max}=\max\{w_{k-2}(u)\mid$ $u\in\{\pi_{yy}^o, \pi_{yn}^o, \pi_{ny}^o, \pi_{nn}^o\}$. The [Lemma 1](#page--1-24) shows that $Z_{max}\ge Z_{max}^o$, i.e., the first two queries stated above are weight-optimal.

Download English Version:

<https://daneshyari.com/en/article/419252>

Download Persian Version:

<https://daneshyari.com/article/419252>

[Daneshyari.com](https://daneshyari.com)