
Discrete Applied Mathematics 202 (2016) 58–69

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Fullerenes with the maximum Clar number✩

Yang Gao, Qiuli Li, Heping Zhang ∗

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China

a r t i c l e i n f o

Article history:
Received 26 November 2014
Received in revised form 21 June 2015
Accepted 8 August 2015
Available online 31 August 2015

Keywords:
Fullerene
Clar number
Clar structure
Leapfrog transformation
Kekulé structure

a b s t r a c t

The Clar number of a fullerene is the maximum number of mutually resonant disjoint
hexagons in the fullerene. It is known that the Clar number of a fullerene with n vertices
is bounded above by ⌊n/6⌋ − 2, where ⌊x⌋ represents the largest integer not greater than
x. We show that there are no fullerenes with n ≡ 2 (mod 6) vertices attaining this bound.
In other words, the Clar number for a fullerene with n ≡ 2 (mod 6) vertices is bounded
above by ⌊n/6⌋ − 3. Moreover, we show that two experimentally produced fullerenes
C80:1(D5d) and C80:2(D2) attain the bound ⌊n/6⌋−3. Finally, we present a graph-theoretical
characterization for fullerenes, whose order n is congruent to 2 (respectively, 4) modulo 6,
achieving the maximum Clar number ⌊n/6⌋ − 3 (respectively, ⌊n/6⌋ − 2).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Clar number is a stability predictor of the benzenoid hydrocarbon isomers. The concept of Clar number originates from
Clar’s sextet theory [3] and Randić’s conjugated circuit model [26]. For any two isomeric benzenoid hydrocarbons, the one
with larger Clar number is more stable [3,20]. Hansen and Zheng [15] reduced the Clar number problem of benzenoid
hydrocarbons to an integer linear programming. Based on abundant computation, the same authors conjectured the linear
programming relaxing is sufficient. The conjecture was confirmed by Abeledo and Atkinson [1].

A fullerene (graph) is a 3-connected plane trivalent graph consisting solely of pentagons and hexagons as faces. The
molecular graph of a spherical carbon fullerene is a fullerene graph. Grünbaum and Motzkin [14] showed that a fullerene
with n vertices exists for n = 20 and for all even n > 22. To analyze the performance of the Clar number as a stability
predictor of the fullerene isomers, we need good upper bounds on the Clar number of fullerenes. Fortunately, Zhang and
Ye [34] established an upper bound of the Clar number of fullerenes. An alternative proof was given by Hartung [16].

Theorem 1.1 ([34]). Let F be a fullerene with n vertices. Then c(F) ≤ ⌊n/6⌋ − 2.

There are seven experimentally produced fullerenes attaining the bound in Theorem 1.1, namely, C60:1(Ih) [21],
C70:1(D5h) [28], C76:1(D2) [6,29], C78:1(D3) [4,19,29], C82:3(C2) [19], C84:22(D2) [22,29] and C84:23(D2d) [22,29], where
Cn : m is the m-th isolated-pentagon fullerene isomer with n atoms generated by the spiral algorithm [10], and the point
group of the isomer is presented inside parenthesis. Ye and Zhang [33] gave a graph-theoretical characterization of fullerenes
with at least 60 vertices attaining the maximum Clar number n/6 − 2, and constructed all 18 fullerenes attaining the max-
imum value 8 among all 1812 fullerene isomers of C60. Later, Zhang et al. [35] proposed a combination of the Clar number
and Kekulé count to predict the stability of fullerenes, which distinguishes uniquely the buckminsterfullerene C60 from its
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Fig. 1. Two experimentally produced extremal fullerenes (a) C80:1 (D5d), (b) C80:2 (D2). (These two graphs are generated by a software package [27] for
constructing and analyzing structures of fullerenes before further processing.)

all 1812 fullerene isomers. Recently, Hartung [16] gave another graph-theoretical characterization of fullerenes, whose Clar
numbers are n/6 − 2, by establishing a connection between fullerenes and (4, 6)-fullerenes, where a (4, 6)-fullerene is a
trivalent plane graph consisting solely of quadrilaterals and hexagons as faces and is the molecular graph of some possible
boron–nitrogen fullerene [9].

In this paper, we will show that there are no fullerenes with n ≡ 2 (mod 6) vertices attaining this bound. Thus Theo-
rem 1.1 is refined as the following theorem.

Theorem 1.2. Let F be a fullerene with n vertices. Then

c(F) ≤


⌊n/6⌋ − 3, if n ≡ 2 (mod 6),
⌊n/6⌋ − 2, otherwise.

We say a fullerene extremal if the Clar number of the fullerene attains the bound in Theorem 1.2. In addition to the seven
experimentally produced extremal fullerenesmentioned before, there are two experimentally produced extremal fullerenes
C80:1(D5d) [17,30], C80:2(D2) [17] (see Fig. 1). Moreover, the minimum fullerene C20 is also an extremal fullerene.

Furthermore, we give a graph-theoretical characterization of fullerenes, whose order n is congruent to 2 (respectively,
4) modulo 6, attaining the maximum Clar number ⌊n/6⌋ − 3 (respectively, ⌊n/6⌋ − 2).

2. Preliminaries

This section presents some concepts and results to be used later. For the concepts and notations of graphs not defined,
we refer to [31].

Let F be a fullerene. A perfect matching (or Kekulé structure)M of F is a set of edges such that each vertex is incident with
exactly one edge in M . A face with exactly half of their bounding edges in a perfect matching M of F is called an alternating
face with respect to M . A resonant pattern of F is a set of disjoint alternating faces (hexagons) with respect to some perfect
matching. The Clar number c(F) of F is the maximum size of all resonant patterns of F . A Clar set is a resonant pattern of size
c(F). If H is a resonant pattern of F andM0 is a perfect matching of F − H , then we say (H,M0) is a Clar cover [37] of F . We
say a Clar cover (H,M0) is a Clar structure if H is a Clar set of F . In a Clar cover (H,M0) of F , a hexagon of H is indicated by
drawing a circle in its interior and an edge inM0 by a pair of double lines in a diagram; for example, see Fig. 1.

Leapfrog transformation for a 2-connected plane graph G is defined as the truncation of the dual of G [13,24]. The leapfrog
graph L(G) is obtained from G by performing the leapfrog transformation. The dual of a plane graph is built as follows:
Place a point in the inner of each face and join two such points if their corresponding faces share a common edge [24]. The
truncation of a 2-connected plane graph G can be obtained by replacing each vertex v of degree k with k new vertices, one
for each edge incident to v. Pairs of vertices corresponding to the edges of G are adjacent, and k new vertices corresponding
to a single vertex of G are joined in the cyclic order given by the embedding to form a face of size k [13]. Fig. 2 illustrates
the generation procedure of a fullerene with 78 vertices from another fullerene with 26 vertices by leapfrog transformation.
Leapfrog transformation is defined equivalently as the dual of the omnicapping [12]. Leapfrog fullerenes have their own
chemical importance. Firstly, they obey the isolated-pentagon rule [10]. Secondly, they are known to be one of the two
constructions that always have properly closed-shell configurations [11]. Finally, they attain the maximum Fries number
n/3 and thus are maximally stable in a localized valence bond picture [7].

Let F be a fullerene and (H,M) a Clar cover of F . For a face f of F , we say that an edge e in M exits f if e shares exactly
one vertex with f . The following lemma is essentially due to Hartung [16].

Lemma 2.1. Let F be a fullerene and (H,M) a Clar cover of F . Then there are an even number of edges in M (possibly 0) exiting
any hexagon and an odd number of edges in M exiting any pentagon.
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