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a b s t r a c t

We define the anti-forcing number of a perfect matching M of a graph G as the minimal
number of edges of Gwhose deletion results in a subgraph with a unique perfect matching
M , denoted by af (G,M). The anti-forcing number of a graph proposed by Vukičević and
Trinajstić in Kekulé structures of molecular graphs is in fact the minimum anti-forcing
number of perfect matchings. For plane bipartite graph G with a perfect matching M , we
obtain a minimax result: af (G,M) equals the maximal number of M-alternating cycles of
Gwhere any two either are disjoint or intersect only at edges inM . For a hexagonal system
H , we show that the maximum anti-forcing number of H equals the Fries number of H . As
a consequence, we have that the Fries number of H is between the Clar number of H and
twice. Further, some extremal graphs are discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We only consider finite and simple graphs. Let G be a graph with vertex set V (G) and edge set E(G). A perfect matching
or 1-factor M of a graph G is a set of edges of G such that each vertex of G is incident with exactly one edge inM .

A Kekulé structure of somemolecular graph (for example, benzenoid and fullerene) coincides with a perfect matching of
a graph. Randić and Klein [20,14] proposed the innate degree of freedom of a Kekulé structure, i.e. the least number of double
bonds can determine this entire Kekulé structure, nowadays it is called the forcing number by Harary et al. [13].

A forcing set S of a perfect matching M of G is a subset of M such that S is contained in no other perfect matchings of G.
The forcing number of M is the smallest cardinality over all forcing sets of M , denoted by f (G,M). An edge of G is called a
forcing edge if it is contained in exactly one perfect matching of G. Theminimum (resp.maximum) forcing number of G is the
minimum (resp. maximum) value of forcing numbers of all perfect matchings of G, denoted by f (G) (resp. F(G)). In general
to compute the minimum forcing number of a graph with the maximum degree 3 is an NP-complete problem [3].

LetM be a perfect matching of a graph G. A cycle C of G is called anM-alternating cycle if the edges of C appear alternately
in M and E(G) \ M .

Lemma 1.1 ([2,22]). A subset S ⊆ M is a forcing set of M if and only if each M-alternating cycle of G contains at least one edge
of S.

For planar bipartite graphs, Pachter and Kim obtained the following minimax theorem by using Lucchesi and Younger’s
result in digraphs [18].
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Theorem 1.2 ([19]). Let M be a perfect matching in a planar bipartite graph G. Then f (G,M) = c(M), where c(M) is the
maximum number of disjoint M-alternating cycles of G.

A hexagonal system (or benzenoid) is a 2-connected finite plane graph such that every interior face is a regular hexagon
of side length one. It can also be formed by a cycle with its interior in the infinite hexagonal lattice on the plane (graphene).
A hexagonal system with a perfect matching is viewed as the carbon-skeleton of a benzenoid hydrocarbon.

Let H be a hexagonal system with a perfect matching M . A set of disjoint M-alternating hexagons of H is called an M-
resonant set. A set of M-alternating hexagons of H (the intersection is allowed) is called an M-alternating set. A maximum
resonant set ofH over all perfect matchings is a Clar structure or Clar set, and its size is the Clar number ofH , denoted by cl(H)
(cf. [11]). A Fries set ofH is a maximum alternating set ofH over all perfect matchings and the Fries number ofH , denoted by
Fries(H), is the size of a Fries set of H . Both Clar number and Fries number can measure the stability of polycyclic benzenoid
hydrocarbons [6,1].

Theorem 1.3 ([28]). Let H be a hexagonal system. Then F(H) = cl(H).

In this paper we consider the anti-forcing number of a graph, which was previously defined by Vukičević and
Trinajstić [26,27] as the smallest number of edges whose removal results in a subgraph with a single perfect matching
(see Refs. [5,8,9,15,29,30] for some researches on this topic). By an analogous manner as the forcing number we define the
anti-forcing number, denoted by af (G,M), of a perfect matching M of a graph G as the minimal number of edges not in M
whose removal to fix a single perfect matchingM of G. We can see that the anti-forcing number of a graph G is theminimum
anti-forcing number of all perfect matchings of G. We also show that the anti-forcing number has a close relation with the
forcing number: For any perfect matching M of G, f (G,M) ≤ af (G,M) ≤ (∆ − 1)f (G,M), where ∆ denotes the maximum
degree of G. For a plane bipartite graph G, we obtain a minimax result: For any perfect matching M of G, the anti-forcing
number of M equals the maximal number of M-alternating cycles of G any two members of which either are disjoint or
intersect only at edges in M . For a hexagonal system H , we show that the maximum anti-forcing number of H equals the
Fries number of H . As a consequence, we have that the Fries number of H is between the Clar number of H and twice.
Discussions for some extremal graphs about the anti-forcing numbers show the anti-forcing number of a graph G with the
maximum degree three can achieve the minimum forcing number or twice.

2. Anti-forcing number of perfect matchings

An anti-forcing set S of a graph G is a set of edges of G such that G − S has a unique perfect matching. The smallest
cardinality of anti-forcing sets of G is called the anti-forcing number of G and denoted by af (G).

Given a perfect matching M of a graph G. If C is an M-alternating cycle of G, then the symmetric difference M ⊕ C is
another perfect matching of G. Here C may be viewed as its edge-set, and for two sets A and B, A ⊕ B := (A ∪ B) \ (A ∩ B). A
subset S ⊆ E(G) \ M is called an anti-forcing set ofM if G − S has a unique perfect matching, that is,M .

Lemma 2.1. A set S of edges of G not in M is an anti-forcing set of M if and only if S contains at least one edge of every M-
alternating cycle of G.

Proof. If S is an anti-forcing set ofM , then G− S has a unique perfect matching, i.e.M . So G− S has noM-alternating cycles.
Otherwise, if G− S has anM-alternating cycle C , then the symmetric differenceM ⊕ C is another perfect matching of G− S
different from M , a contradiction. Hence each M-alternating cycle of G contains at least one edge of S. Conversely, suppose
that S contains at least one edge of everyM-alternating cycle of G. That is, G − S has noM-alternating cycles, so G − S has a
unique perfect matching. �

The smallest cardinality of anti-forcing sets ofM is called the anti-forcing number ofM and denoted by af (G,M). So we
have the following relations between the forcing number and anti-forcing number.

Theorem 2.2. Let G be a graph with the maximum degree ∆. For any perfect matching M of G, we have

f (G,M) ≤ af (G,M) ≤ (∆ − 1)f (G,M).

Proof. Given any anti-forcing set S of M . For each edge e in S, let e1 and e2 be the edges in M adjacent to e. All such edges e
in S are replaced with one of e1 and e2 to get another set S ′ of edges inM . It is obvious that |S ′

| ≤ |S|. Further we claim that
S ′ is a forcing set of M . For any M-alternating cycle C of G, by Lemma 2.1 C must contain an edge e in S. Then C must pass
through both e1 and e2. By the definition for S ′, C contains at least one edge of S ′. So Lemma 1.1 implies that S ′ is a forcing
set ofM . Hence the claim holds. So f (G,M) ≤ |S ′

| ≤ |S|, and the first inequality is proved.
Now we consider the second inequality. Let F be a minimum forcing set of M . Then f (G,M) = |F |. For each edge e in F ,

we choose all the edges not in M incident with one end of e. All such edges form a set F ′ of size no larger than (∆ − 1)|F |,
which is disjoint withM . We claim that F ′ is an anti-forcing set ofM . Otherwise, Lemma 2.1 implies that G− F ′ contains an
M-alternating cycle C . Since each edge in F is a pendant edge of G−F ′, C does not pass through an edge of F . This contradicts
that F is a forcing set ofM by Lemma 1.1. Hence af (G,M) ≤ |F ′

| ≤ (∆ − 1)|F |. �
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