Anti-forcing numbers of perfect matchings of graphs

Hongchuan Lei ${ }^{\mathrm{a}, \mathrm{b}}$, Yeong-Nan Yeh ${ }^{\text {b,* }}$, Heping Zhang ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ College of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
${ }^{\mathrm{b}}$ Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan
${ }^{\text {c }}$ School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China

ARTICLE INFO

Article history:

Received 2 April 2014
Received in revised form 19 August 2015
Accepted 20 August 2015
Available online 12 September 2015

Keywords:

Plane bipartite graph
Hexagonal system
Perfect matching
Forcing number
Anti-forcing number
Fries number

Abstract

We define the anti-forcing number of a perfect matching M of a graph G as the minimal number of edges of G whose deletion results in a subgraph with a unique perfect matching M, denoted by $a f(G, M)$. The anti-forcing number of a graph proposed by Vukičević and Trinajstić in Kekule structures of molecular graphs is in fact the minimum anti-forcing number of perfect matchings. For plane bipartite graph G with a perfect matching M, we obtain a minimax result: af (G, M) equals the maximal number of M-alternating cycles of G where any two either are disjoint or intersect only at edges in M. For a hexagonal system H, we show that the maximum anti-forcing number of H equals the Fries number of H. As a consequence, we have that the Fries number of H is between the Clar number of H and twice. Further, some extremal graphs are discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We only consider finite and simple graphs. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. A perfect matching or 1 -factor M of a graph G is a set of edges of G such that each vertex of G is incident with exactly one edge in M.

A Kekulé structure of some molecular graph (for example, benzenoid and fullerene) coincides with a perfect matching of a graph. Randić and Klein [20,14] proposed the innate degree of freedom of a Kekulé structure, i.e. the least number of double bonds can determine this entire Kekulé structure, nowadays it is called the forcing number by Harary et al. [13].

A forcing set S of a perfect matching M of G is a subset of M such that S is contained in no other perfect matchings of G. The forcing number of M is the smallest cardinality over all forcing sets of M, denoted by $f(G, M)$. An edge of G is called a forcing edge if it is contained in exactly one perfect matching of G. The minimum (resp. maximum) forcing number of G is the minimum (resp. maximum) value of forcing numbers of all perfect matchings of G, denoted by $f(G)$ (resp. $F(G)$). In general to compute the minimum forcing number of a graph with the maximum degree 3 is an NP-complete problem [3].

Let M be a perfect matching of a graph G. A cycle C of G is called an M-alternating cycle if the edges of C appear alternately in M and $E(G) \backslash M$.

Lemma 1.1 ([2,22]). A subset $S \subseteq M$ is a forcing set of M if and only if each M-alternating cycle of G contains at least one edge of S.

For planar bipartite graphs, Pachter and Kim obtained the following minimax theorem by using Lucchesi and Younger's result in digraphs [18].

[^0]Theorem 1.2 ([19]). Let M be a perfect matching in a planar bipartite graph G. Then $f(G, M)=c(M)$, where $c(M)$ is the maximum number of disjoint M-alternating cycles of G.

A hexagonal system (or benzenoid) is a 2-connected finite plane graph such that every interior face is a regular hexagon of side length one. It can also be formed by a cycle with its interior in the infinite hexagonal lattice on the plane (graphene). A hexagonal system with a perfect matching is viewed as the carbon-skeleton of a benzenoid hydrocarbon.

Let H be a hexagonal system with a perfect matching M. A set of disjoint M-alternating hexagons of H is called an M resonant set. A set of M-alternating hexagons of H (the intersection is allowed) is called an M-alternating set. A maximum resonant set of H over all perfect matchings is a Clar structure or Clar set, and its size is the Clar number of H, denoted by $\operatorname{cl}(H)$ (cf. [11]). A Fries set of H is a maximum alternating set of H over all perfect matchings and the Fries number of H, denoted by Fries (H), is the size of a Fries set of H. Both Clar number and Fries number can measure the stability of polycyclic benzenoid hydrocarbons [6,1].

Theorem 1.3 ([28]). Let H be a hexagonal system. Then $F(H)=c l(H)$.
In this paper we consider the anti-forcing number of a graph, which was previously defined by Vukičević and Trinajstić $[26,27]$ as the smallest number of edges whose removal results in a subgraph with a single perfect matching (see Refs. [5,8,9,15,29,30] for some researches on this topic). By an analogous manner as the forcing number we define the anti-forcing number, denoted by $a f(G, M)$, of a perfect matching M of a graph G as the minimal number of edges not in M whose removal to fix a single perfect matching M of G. We can see that the anti-forcing number of a graph G is the minimum anti-forcing number of all perfect matchings of G. We also show that the anti-forcing number has a close relation with the forcing number: For any perfect matching M of $G, f(G, M) \leq a f(G, M) \leq(\Delta-1) f(G, M)$, where Δ denotes the maximum degree of G. For a plane bipartite graph G, we obtain a minimax result: For any perfect matching M of G, the anti-forcing number of M equals the maximal number of M-alternating cycles of G any two members of which either are disjoint or intersect only at edges in M. For a hexagonal system H, we show that the maximum anti-forcing number of H equals the Fries number of H. As a consequence, we have that the Fries number of H is between the Clar number of H and twice. Discussions for some extremal graphs about the anti-forcing numbers show the anti-forcing number of a graph G with the maximum degree three can achieve the minimum forcing number or twice.

2. Anti-forcing number of perfect matchings

An anti-forcing set S of a graph G is a set of edges of G such that $G-S$ has a unique perfect matching. The smallest cardinality of anti-forcing sets of G is called the anti-forcing number of G and denoted by af (G).

Given a perfect matching M of a graph G. If C is an M-alternating cycle of G, then the symmetric difference $M \oplus C$ is another perfect matching of G. Here C may be viewed as its edge-set, and for two sets A and $B, A \oplus B:=(A \cup B) \backslash(A \cap B)$. A subset $S \subseteq E(G) \backslash M$ is called an anti-forcing set of M if $G-S$ has a unique perfect matching, that is, M.

Lemma 2.1. A set S of edges of G not in M is an anti-forcing set of M if and only if S contains at least one edge of every M alternating cycle of G.

Proof. If S is an anti-forcing set of M, then $G-S$ has a unique perfect matching, i.e. M. So $G-S$ has no M-alternating cycles. Otherwise, if $G-S$ has an M-alternating cycle C, then the symmetric difference $M \oplus C$ is another perfect matching of $G-S$ different from M, a contradiction. Hence each M-alternating cycle of G contains at least one edge of S. Conversely, suppose that S contains at least one edge of every M-alternating cycle of G. That is, $G-S$ has no M-alternating cycles, so $G-S$ has a unique perfect matching.

The smallest cardinality of anti-forcing sets of M is called the anti-forcing number of M and denoted by $a f(G, M)$. So we have the following relations between the forcing number and anti-forcing number.

Theorem 2.2. Let G be a graph with the maximum degree Δ. For any perfect matching M of G, we have

$$
f(G, M) \leq a f(G, M) \leq(\Delta-1) f(G, M)
$$

Proof. Given any anti-forcing set S of M. For each edge e in S, let e_{1} and e_{2} be the edges in M adjacent to e. All such edges e in S are replaced with one of e_{1} and e_{2} to get another set S^{\prime} of edges in M. It is obvious that $\left|S^{\prime}\right| \leq|S|$. Further we claim that S^{\prime} is a forcing set of M. For any M-alternating cycle C of G, by Lemma $2.1 C$ must contain an edge e in S. Then C must pass through both e_{1} and e_{2}. By the definition for S^{\prime}, C contains at least one edge of S^{\prime}. So Lemma 1.1 implies that S^{\prime} is a forcing set of M. Hence the claim holds. So $f(G, M) \leq\left|S^{\prime}\right| \leq|S|$, and the first inequality is proved.

Now we consider the second inequality. Let F be a minimum forcing set of M. Then $f(G, M)=|F|$. For each edge e in F, we choose all the edges not in M incident with one end of e. All such edges form a set F^{\prime} of size no larger than $(\Delta-1)|F|$, which is disjoint with M. We claim that F^{\prime} is an anti-forcing set of M. Otherwise, Lemma 2.1 implies that $G-F^{\prime}$ contains an M-alternating cycle C. Since each edge in F is a pendant edge of $G-F^{\prime}, C$ does not pass through an edge of F. This contradicts that F is a forcing set of M by Lemma 1.1. Hence af $(G, M) \leq\left|F^{\prime}\right| \leq(\Delta-1)|F|$.

https://daneshyari.com/en/article/419260

Download Persian Version:
https://daneshyari.com/article/419260

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: mayeh@math.sinica.edu.tw (Y.-N. Yeh), zhanghp@lzu.edu.cn (H. Zhang).

