Quasi-centers and radius related to some iterated line digraphs, proofs of several conjectures on de Bruijn and Kautz graphs

Nicolas Lichiardopol
Lycée A. de Craponne, Salon, France

ARTICLE INFO

Article history:

Received 24 August 2013
Received in revised form 24 August 2015
Accepted 27 August 2015
Available online 14 September 2015

Keywords:

Quasi-center
Radius
Walk
de Bruijn graph
Kautz graph

Abstract

Bond (1987) and Bond et al. (1987), conjectured that a quasi-center in an undirected de Bruijn graph $U B(d, D)$ has cardinality at least $d-1$, and that a quasi-center in an undirected Kautz graph $U K(d, D)$ has cardinality at least d. They proved that for $d \geq 3$, the radii of $U B(d, D)$ and $U K(d, D)$ are both equals to D, and conjectured also that the radii of $U B(2, D)$ and $U K(2, D)$ are respectively $D-1$ and D. In this paper we give results in a more general context which validate these conjectures (excepting that asserting that the radius of $U B(2, D)$ is $D-1)$, and give simplified proofs of the cited results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction, notation

Let G be a connected graph. The distance $d(x, y)$ between two vertices x and y of G is the length of a shortest path between them. For a set S of vertices of G and a vertex x of $G, d(S, x)$ is the minimum of the distances $d(y, x)$ with $y \in S$. The eccentricity $e(x)$ of x is the maximum of the distances $d(x, y)$ where y belongs to the vertex set $V(G)$ of G. The diameter $D(G)$ of G is the maximum of the distances $d(x, y)$ with x, y in $V(G)$, and it is also the maximum of the eccentricities of the vertices of G. The radius $R(G)$ of G is the minimum of the eccentricities. A set S of vertices of G is called a quasi-center if for every $x \in V(G)$ we have $d(S, x)<D(G)$.

For a vertex x of a undirected graph G, a vertex y such that $\{x, y\}$ is an edge of G is a neighbor of x. The degree $d_{G}(x)$ of x is the number of the neighbors of x.

In this paper, we allow loops in digraphs. For a vertex x of a digraph G, a vertex y such that (x, y) is an arc of G is an out-neighbor of x. The out-degree $d_{G}^{+}(x)$ of x is the number of the out-neighbors of x. A vertex z such that (z, x) is an arc of G is an in-neighbor of x. The in-degree $d_{G}^{-}(x)$ of x is the number of the in-neighbors of x.

In an undirected graph G, a walk of length m is a sequence X_{1}, \ldots, X_{m+1} of vertices of G such that X_{i+1} is a neighbor of X_{i} for $1 \leq i \leq m$. When $X_{m+1}=X_{1}$, the sequence is called a closed walk. A walk with distinct vertices is a path, and a closed walk with distinct vertices is a cycle.

A directed walk of length m, in a digraph G, is a sequence X_{1}, \ldots, X_{m+1} of vertices of G such that X_{i+1} is an out-neighbor of X_{i} for $1 \leq i \leq m$. When $X_{m+1}=X_{1}$, the sequence is called a directed closed walk. A directed walk with distinct vertices is a directed path, and a directed closed walk with distinct vertices is a directed cycle. From now on, the sequence X_{1}, \ldots, X_{m+1} will be denoted by $X_{1} \ldots X_{m+1}$.

[^0]For a digraph G, the underlying graph $U G$ of G is the undirected graph obtained from G by removing all the orientations of G (loops included). The notation which follows is that of [5].

An L-walk of length m of $U G$ is a directed walk of length m of G. An R-walk of length m of $U G$ is a walk $X_{1} \ldots X_{m+1}$ of $U G$ such that $X_{m+1} \ldots X_{1}$ is a directed walk of length m of G. An $L R$-walk of length m is a walk $X_{1} \ldots X_{m+1}$ such that there exists $i, 1<i<m+1$ such that $X_{1} \ldots X_{i}$ is an L-walk and $X_{i} \ldots X_{m+1}$ is an R-walk. Similarly we define an $R L$-walk.

In a strongly connected digraph G, the distance $d(x, y)$ from the vertex x to the vertex y of G is the length of a shortest directed path from x to y. The diameter $D(G)$ of G is the maximum of the distances $d(x, y)$ with x, y in $V(G)$.

For a digraph G, the line digraph $L(G)$ of G, is the digraph whose vertex set is the set $\mathcal{A}(G)$ of the arcs of G, and whose arcs are the couples $(x y, y z)$, where $x y$ and $y z$ are arcs of G. Clearly, for every arc $x y$ of G, we have $d_{L(G)}^{+}(x y)=d_{G}^{+}(y)$ and $d_{L(G)}^{-}(x y)=d_{G}^{-}(x)$. For an integer $n \geq 1$, the nth iterated line digraph is the digraph $L^{n}(G)$ of G, recursively defined by $L^{1}(G)=L(G)$, and $L^{n}(G)=L\left(L^{n-1}(G)\right)$. For convenience, we put $L^{0}(G)=G . L^{n}(G)$ is also the digraph whose vertices are the directed walks of G of length n, and whose arcs are the ordered pairs ($x_{1} \ldots x_{n+1}, y_{1} \ldots y_{n+1}$) of directed walks of length n, with $x_{2} \ldots x_{n+1}=y_{1} \ldots y_{n}$. It is known that if G is a digraph of diameter D, distinct from a directed cycle, the diameter of the digraph $L^{n}(G)$ is $D+n$.

For an integer $d \geq 2, \mathbb{Z}_{d}=\{0, \ldots, d-1\}$ is the set of the integers modulo d. For $d \geq 2$ and $D \geq 2$, the de Bruijn digraph $B(d, D)$ is the digraph whose vertex set is \mathbb{Z}_{d}^{D}, and whose arcs are the couples ($x_{1} x_{2} \ldots x_{D}, x_{2} \ldots x_{D} i$) with $i \in \mathbb{Z}_{d}$. The de Bruijn digraph $B(d, 1)$ is the complete digraph \vec{K}_{d} (with a loop at each vertex). It is known and easy to prove that $B(d, D)$ is a strongly connected regular digraph of degree d. The de Bruijn graph $U B(d, D)$ is the underlying graph of $B(d, D)$. It is known and easy to prove that for $D \geq 2$, the de Bruijn digraph $B(d, D)$ is the line digraph of $B(d, D-1)$, and thus $B(d, D)$ is the $(D-1)$ th iterated line digraph of \vec{K}_{d}. It is also known that the diameters of $B(d, D)$ and of $U B(d, D)$ are both equal to D.

For $d \geq 2$ and $D \geq 2$, the Kautz digraph $K(d, D)$ is the sub-digraph of $B(d+1, D)$ induced by the set $\Omega(d, D)$ of the vertices $x_{1} \ldots x_{D}$ of $B(d+1, D)$ verifying $x_{i} \neq x_{i+1}$ for $1 \leq i \leq D-1$. The Kautz digraph $K(d, 1)$ is the complete digraph \vec{K}_{d+1}^{*} (without loops). It is known and easy to see that $K(d, D)$ is a strongly connected regular digraph of degree d (without loops). The Kautz graph $U K(d, D)$ is the underlying graph of $K(d, D)$. It is known and easy to prove that for $D \geq 2$, the Kautz digraph $K(d, D)$ is the line digraph of $K(d, D-1)$, and then $K(d, D)$ is the $(D-1)$ th iterated line digraph of \vec{K}_{d+1}^{*}. It is also known that the diameters of $K(d, D)$ and of $U K(d, D)$ are both equal to D.

Note that any set of cardinality d could play the role of \mathbb{Z}_{d}. We introduce now a generalization of de Bruijn and Kautz digraphs.

For $d \geq 2$ and a subset A of $\mathbb{Z}_{d}, G(d, A)$ is the digraph whose vertex set is \mathbb{Z}_{d}, and whose arcs are the ordered pairs (x, y), $x, y \in \mathbb{Z}_{d}$ and $x \neq y$, and the loops $(x, x), x \in A$. It is clear that the vertices of $G(d, A)$ which are not in A have out-degree and in-degree both equal to $d-1$, and that the vertices of A have out-degree and in-degree both equal to d. It is also clear that $G(d, A)$ is strongly connected, and that the diameters of $G(d, A)$ and $U G(d, A)$ are both equal to 1 .

For $D \geq 1, G(d, A, D)$ denotes the iterated line digraph $L^{D-1}(G(d, A))$. It is easy to see that when $A=\mathbb{Z}_{d}, G(d, A, D)$ is the de Bruijn digraph $B(d, D)$ (and so $G\left(d, \mathbb{Z}_{d}, D\right)=B(d, D)$), and that when $d \geq 3$ and $A=\emptyset, G(d, A, D)$ is the Kautz digraph $K(d-1, D)$ (and so $G(d, \emptyset, D)=K(d-1, D)$).
J. Bond in [1], and J. Bond et al. in [2], claimed the following conjectures:

Conjecture 1.1. Every quasi-center of the de Bruijn graph $U B(d, D)$ has cardinality at least $d-1$.
Conjecture 1.2. Every quasi-center of the Kautz graph $U K(d, D)$ has cardinality at least d.
Conjecture 1.3. The radius of the Kautz graph $U K(2, D)$ is D.
They proved:
Theorem 1.4. For $d \geq 3$, the radii of $U B(d, D)$ and $U K(d, D)$ are both equal to D.
In this paper, we prove that the cardinality of a quasi-center of a graph $U G(d, A, D)$ is at least $d-1$, which validates Conjectures 1.1 and 1.2. By using this result, we easily prove that for $d \geq 3$, the radius of a graph $U G(d, A, D)$ is D, which validates Conjecture 1.3, and yields an easier proof of Theorem 1.4.

2. Preliminary results

In [3], the author of this paper defined from a de Bruijn digraph $B(d, D), D \geq 2$ three digraphs, each isomorphic to $B(d, D-1)$. Here, we partially generalize these constructions. More precisely, consider an arbitrary digraph G. Let \mathcal{R}_{1}, be the relation defined on $V(L(G))$ by $x_{1} x_{2} \mathcal{R}_{1} y_{1} y_{2} \Leftrightarrow x_{2}=y_{2}$.

It is easy to see that \mathcal{R}_{1} is an equivalence relation, and that the class of a vertex $X=x_{1} x_{2}$ of $L(G)$ is $C(X)=\left\{i x_{2} ; i x_{2} \in\right.$ $\mathcal{A}(G)\}$. We denote by A_{1} the set of the equivalence classes, and then G_{1} is the digraph whose vertex set is A_{1}, and whose arcs are the ordered pairs of classes $\left(C, C^{\prime}\right)$ such that there exists a vertex $a \in C$ having an out-neighbor $a^{\prime} \in C^{\prime}$. We observe that in this case, all the vertices of C have a^{\prime} as out-neighbor. When the minimum in-degree of G is at least 1 , we claim that the $\operatorname{map} f_{1}$ from $V(G)$ into A_{1} defined by $f_{1}(x)=C(i x)$, where $i \in V(G)$ is an in-neighbor of x, is an isomorphism from G to G_{1}.

https://daneshyari.com/en/article/419261

Download Persian Version:

https://daneshyari.com/article/419261

Daneshyari.com

[^0]: E-mail address: nicolas.lichiardopol@neuf.fr.
 http://dx.doi.org/10.1016/j.dam.2015.08.025 0166-218X/© 2015 Elsevier B.V. All rights reserved.

