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a b s t r a c t

We show that very simple algorithms based on local search are polynomial-time approx-
imation schemes for Maximum Independent Set, Minimum Vertex Cover and Minimum
Dominating Set, when the input graphs have a fixed forbidden minor.
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1. Introduction

In this paper we present very simple PTAS’s (polynomial-time approximation schemes) based on greedy local optimiza-
tion forMaximum Independent Set,MinimumVertexCover andMinimumDominating Set inminor-free families of graphs.
The existence of PTAS’s for such problemswas shown by Grohe [10], and better time boundswere obtained using the frame-
work of bidimensionality; see the survey [7] and references therein. The advantage of our algorithms is that they are sur-
prisingly simple and do not rely on deep structural results for minor-free families.

A graph H is a minor of G if H can be obtained from a subgraph of G by edge contractions. We say that G is H-minor-free
if H is not its minor. A family of graphs is H-minor-free if all the graphs in the family are H-minor-free. It is well-known
that the family of planar graphs is K3,3-minor-free and K5-minor-free, and similar results hold for graphs on surfaces. Thus,
minor-free families is a vast extension of the family of planar graphs and,more generally, graphs on surfaces.Wewill restrict
our attention to Kh-minor-free graphs, where Kh is the complete graph on h vertices, because H-minor-free graphs are also
K|V (H)|-minor-free.

The development of PTAS’s for graphswith a forbidden fixedminor is often based on a complicated theorem of Robertson
and Seymour [15] describing the structure of such graphs. In fact, one needs an algorithmic version of the structural
theorem and much work has been done to obtain simpler and faster algorithms finding the decomposition. See Grohe,
Kawarabayashi and Reed [11] for the latest improvement and a discussion of previous work. Even those simplifications
are still very complicated and, in fact, the description of the structure of Kh-minor-free graphs is cumbersome in itself.
Obtaining a PTAS for Maximum Independent Set restricted to minor-free families is easier and can be done through the
computation of separators, as shown by Alon, Seymour, and Thomas [2]. However, the approach does notwork forMinimum
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Algorithm 1: Independent(h,G, ε)
Input: An integer h > 0, a Kh-minor-free graph G = (V , E), and a parameter ε ∈ (0, 1)
Output: An independent set U of G

1 r = Ch/ε
2, where Ch is an appropriate constant depending on h

2 U = ∅
3 while ∃U1 ⊆ U, V1 ⊆ V \ U with |U1| < |V1| ≤ r and (U\U1) ∪ V1 is an independent set do
4 U = (U\U1) ∪ V1

5 return U

Fig. 1. PTAS forMaximum Independent Set for Kh-minor-free graphs.

Vertex Cover andMinimum Dominating Set. Baker [3] developed a technique to obtain PTAS for planar graphs using more
elementary tools. In fact, much of the work for minor-free families is a vast, complex generalization of the approach by
Baker.

To show how simple is our approach, look at the algorithm Independent(h,G, ε) forMaximum Independent Set shown
in Fig. 1. The algorithms for Minimum Vertex Cover and Minimum Dominating Set are similar and provided in Section 3.
In the algorithms we use a constant Ch that depends only on the size of the forbidden minor. Its actual value is in Θ(h3), as
we shall see.

We see that, for any fixed h, the algorithm is a very simple local optimization that returns an independent set that is
O(ε−2)-locally optimal, in the sense that it cannot be made larger by substituting any O(ε−2) of its vertices. The algorithm
runs in time nO(ε−2), for any fixed h.

The main idea in the proof of the correctness of our algorithm is dividing the input graph into not-too-many pieces with
O(ε−2) vertices and small boundary, as defined in Section 2. For this we use the existence of separators [2] in the same way
as Frederickson [8] did for planar graphs. A similar division has been used in other works; see for example [16]. The division
is useful for the following fact: changing the solution U within one of the pieces cannot result in a better solution because
U is O(ε−2)-locally optimal. Using this, we can infer (after some work) that, if G is Kh-minor-free, then

opt − |U| ≤ ε · opt.
For Minimum Vertex Cover and Minimum Dominating Set one has to make the additional twist of considering a division
in a graph that represents the locally optimal solution and the optimal solution.

It is important to note that the analysis of the algorithm uses separators but the algorithm does not use them. Thus, all
the difficulty is in the proof that the algorithm is a PTAS, not in the description of the algorithm. In any case, our proofs
only rely on the existence of separators and is dramatically simpler than previous proofs of existence of PTAS’s forMinimum
Vertex Cover andMinimum Dominating Set. In particular, we do not need any of the tools developed for the Graph Minor
Theorem. A drawback of our method is that the running time is nO(ε−2), while previous, more complicated methods require
O(f (ε)nc), for some constant c > 0 and function f . Another drawback of our method is that it works only in unweighted
problems.

The idea of using separators to show that a local-optimization algorithm is a PTAS was presented by Chan and
Har-Peled [5] and independently by Mustafa and Ray [14]. Local search was also used earlier to obtain constant-factor
approximations by Agarwal and Mustafa [1]. The technique has been used recently to provide PTAS’s for some geometric
problems; see for example [4,6,9,13]. However, the use for minor-free families of graphs has passed unnoticed.

2. Dividing minor-free graphs

In this section we present a way of dividing a graph into subgraphs with special properties. We will not use this division
in our algorithms, but it will be the main tool for their analysis.

Let G be a graph and let S = {S1, . . . , Sk} be a collection of subsets of vertices of G. We define the boundary of a piece
Si ∈ S (with respect to S), denoted by ∂Si, as those vertices of Si that appear in some other piece Sj ∈ S, j ≠ i. Thus

∂Si = Si ∩


j≠i Sj

. We define the interior of S as int(Si) = Si \ ∂Si.

A division of a graph G is a collection S = {S1, S2, . . . , Sk} of subsets of vertices of G satisfying the following two
properties:

• G = 
i G[Si], that is, each edge and each vertex of G appears in some induced subgraph G[Si], and

• for each Si ∈ S and v ∈ int(Si), all neighbors of v are in Si.

We refer to each subset Si ∈ S as a piece of the division. (It may be useful to visualize a piece as the induced subgraph G[Si],
since we actually use Si as a proxy to G[Si].)

We want to find a division of a Kh-minor-free graph G where, for some parameter r that we can choose, each piece has
roughly r vertices and all pieces together have roughly |V (G)|/√r boundary vertices, countedwithmultiplicity. For technical
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