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a b s t r a c t

A tournament solution is a function that maps a tournament, i.e., a directed graph
representing an asymmetric and connex relation on a finite set of alternatives, to a non-
empty subset of the alternatives. Tournament solutions play an important role in social
choice theory, where the binary relation is typically defined via pairwisemajority voting. If
the number of alternatives is sufficiently small, different tournament solutions may return
overlapping or even identical choice sets. For two given tournament solutions, we define
the disparity index as the order of the smallest tournament forwhich the solutions differ and
the separation index as the order of the smallest tournament for which the corresponding
choice sets are disjoint. Isolated bounds on both values for selected tournament solutions
are known from the literature. In this paper, we address these questions systematically
using an exhaustive computer analysis. Among other results, we provide the first
tournament in which the bipartisan set and the Banks set are not contained in each other.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

An important area in the mathematical social sciences concerns solution concepts that identify desirable sets of
alternatives based on the preferences of multiple agents. Many of these concepts are defined in terms of a so-called
dominance relation, where one alternative dominates another if a strictmajority of the agents prefer the former to the latter.
This relation can be nicely represented as an oriented graph whose vertices are the alternatives and there is a directed edge
from a to b if and only if a dominates b. Whenever there is an odd number of agents with linear preferences, the dominance
relation is asymmetric and connex, i.e. there is exactly one directed edge between any pair of distinct vertices, and the graph
thus constitutes a tournament. A tournament solution is a function that maps a tournament to a non-empty subset of its
vertices or alternatives. Application areas of tournament solutions include voting [39,35], multi-criteria decision analysis
[2,4], zero-sum games [27,34,23], and coalitional games [8].

A wide variety of tournament solutions have been proposed in the literature. Even though many of them are based on
vastly different ideas, they share some similarities. For instance, all tournament solutions considered in this paper uniquely
select the Condorcet winner, i.e. an alternative that dominates every other alternative, whenever such an alternative exists.
Moreover, some tournament solutions return completely identical or at least overlapping choice sets if the number of
alternatives is sufficiently small. In this paper, we aim at formalizing and systematically investigating the similarity of any
given pair of tournament solutions by studying theminimal number of alternatives that are required for the disparity and the
separation of the corresponding choice sets. To this end,we define the disparity index as the order of the smallest tournament
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for which the solutions differ and the separation index as the order of the smallest tournament for which the corresponding
choice sets are disjoint.

Isolated bounds on both values for selected tournament solutions have been provided in previous work. In particular,
the construction of tournaments for which certain tournament solutions return disjoint choice sets has been addressed by
several researchers. For example, the first tournament proposed in the literature for which the Banks set and the Slater set
are disjoint consists of 75 alternatives [33].1 Later, this bound on the separation index was improved to 16 alternatives by
Charon et al. [19] and, more recently, to 14 alternatives by Östergård and Vaskelainen [40]. Östergård and Vaskelainen have
also provided a lower bound of 11 by means of an exhaustive computer analysis. In other work, Hudry [31] has shown that
the separation index for the Banks set and the Copeland set is 13. Dutta [25] provided a tournament of order 8 in which the
Banks set and the tournament equilibrium set are both strictly contained in the minimal covering set. Among other facts,
our study has shown that Dutta’s example is minimal.

Perhaps the most interesting open problem regarding the relationships between tournament solutions concerns the
bipartisan set and the Banks set. In all examples studied so far, either the Banks set is contained in the bipartisan set
or the Banks set is contained in the bipartisan set (see, e.g. [35]). In particular, it is unknown whether these tournament
solutions always intersect. In this paper, we provide the first tournament in which the bipartisan set and the Banks set are
not contained in each other. This tournament is of order 8. The minimal covering set (a superset of the bipartisan set) has
been shown to always intersect with the Banks set. We show that the smallest tournament in which neither choice set is
contained in the other is of order 10. Our findings are summarized in Sections 4 and 5.

2. Preliminaries

A (finite) tournament T is a pair (A, ≻), where A is a set of alternatives and ≻ is an asymmetric and connex (but not
necessarily transitive) binary relation on A, usually referred to as the dominance relation. Intuitively, a ≻ b signifies that
alternative a is preferable to alternative b. The dominance relation can be extended to sets of alternatives by writing A ≻ B
when a ≻ b for all a ∈ A and b ∈ B. Moreover, for a subset of alternatives B ⊆ A, we will sometimes consider the restriction
of the dominance relation ≻B = ≻ ∩ (B × B).

For a tournament (A, ≻) and an alternative a ∈ A, we denote by D(a) the dominion (or out-neighborhood) of a, i.e.

D(a) = {b ∈ A | a ≻ b},

and by D(a) the set of dominators (or in-neighborhood) of a, i.e.

D(a) = {b ∈ A | b ≻ a}.

The order |T | of a tournament T = (A, ≻) refers to the cardinality of A, and Tn denotes the set of all tournaments of order
n or less. The set of all linear orders on some set A is denoted by L(A) and the maximal element of A according to a linear
order L ∈ L(A) is denoted by max(L).

The elements of the adjacency matrix M(T ) = (mab)a,b∈A of a tournament T are 1 whenever a ≻ b and 0 otherwise. The
skew-adjacency matrix G(T ) of the corresponding tournament graph is skew-symmetric and defined as the difference of the
adjacency matrix and its transpose, i.e. G(T ) = M(T ) − M(T )t .

A tournament solution is a function that maps a tournament to a nonempty subset of its alternatives. For two tournament
solutions S1 and S2, we define the disparity index d(S1, S2) as the order of the smallest tournament T for which S1 and S2
differ, i.e.

d(S1, S2) = min{n ∈ N | ∃ T ∈ Tn such that S1(T ) ≠ S2(T )}.

Similarly, we define the separation index s(S1, S2) as the order of the smallest tournament T for which the two respective
choice sets are disjoint. Formally,

s(S1, S2) = min{n ∈ N | ∃ T ∈ Tn such that S1(T ) ∩ S2(T ) = ∅}.

Obviously, d(S1, S2) ≤ s(S1, S2) for all tournament solutions S1 and S2.
We now define the tournament solutions considered in this paper and address the question of how to compute them.

For an overview and more details on most concepts, we refer to Laslier [35] and Brandt et al. [13]. Computational issues are
discussed by Brandt et al. [13], Hudry [32], and Brandt [5].
Copeland set. The Copeland set CO(T ) [21] of a tournament T consists of all alternatives whose dominion is of maximum size,
i.e.

CO(T ) = argmax
a∈A

|D(a)|.

|D(a)| is also called the Copeland score of a. This set can be easily computed in time O(|T |
2) by determining all out-degrees

and choosing the alternatives with maximum out-degree.

1 Laffond and Laslier [33] presented a similar tournament on 139 alternatives in which the Banks set, the Slater, and the Copeland set are all disjoint
from each other.
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