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a b s t r a c t

We consider computing amaximumnon-crossingmatching in convex bipartite graphs. For
a convex bipartite graph of n vertices andm edges, we present an O(n log n) time algorithm
for finding a maximum non-crossing matching in the graph. The previous best algorithm
takes O(m + n log n) time (Malucelli et al., 1993). Since m = Θ(n2) in the worst case, our
result improves the previous work.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Developing efficient algorithms for matching problems is an important topic in combinatorics and operations research.
In this paper, we study the problemof computing amaximumnon-crossingmatching in convex bipartite graphs and present
an efficient algorithm for it. Roughly speaking, amatching is non-crossing if no two edges of the graph in its given embedding
intersect each other. The formal problem definition is given below.

1.1. Notation and problem statement

A graph G = (V , E) with vertex set V and edge set E is a bipartite graph if V can be partitioned into two subsets A and B
(i.e., V = A ∪ B and A ∩ B = ∅) such that every edge e(a, b) ∈ E connects a vertex a ∈ A and a vertex b ∈ B (it is often also
denoted by G = (A, B, E)). A bipartite graph G = (A, B, E) is said to be convex on the vertex set B if there is a linear ordering
on B, say B = {b1, b2, . . . , b|B|}, such that for each vertex a ∈ A and any two vertices bi and bj in Bwith i < j, if both bi and bj
are connected to a by two edges in E, then every vertex bt ∈ Bwith i ≤ t ≤ j is connected to a by an edge in E. If G is convex
on B, then G is called a convex bipartite graph. Fig. 1 shows an example. In this paper, A, B, and E always refer to these sets in
a convex bipartite graph G = (A, B, E), and we assume that the vertices in B are ordered as discussed above.

We say that an edge e(a, b) ∈ E is an incident edge of a and b, and a and b are adjacent to each other. For each vertex ak ∈ A,
suppose the adjacent vertices of ak are bi, bi+1, . . . , bj (i.e., all vertices in B from bi to bj); then we denote begin(ak) = i and
end(ak) = j.
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Fig. 1. An example of a convex bipartite graph.

For simplicity, we assume n = |A| = |B|. Let A = {a1, a2, . . . , an}. Let m = |E|. Note that although m may be Θ(n2),
the graph G can be represented implicitly in O(n) time and O(n) space by giving the two values begin(a) and end(a) for each
vertex a ∈ A. A subset M ⊆ E is a matching if no two distinct edges in M are connected to the same vertex. Two edges
e(ai, bj) and e(ah, bl) in E are said to be non-crossing if either (i < h and j < l) or (i > h and j > l). Intuitively, suppose
we put the two vertex sets A and B on two vertical lines in the plane, respectively, and order them from top to bottom by
their indices; if we draw each edge in E as a line segment connecting the corresponding two vertices, then two edges are
non-crossing if and only if the two corresponding line segments do not intersect (or one segment is above the other). A
matching M is non-crossing if no two distinct edges in M intersect. A maximum non-crossing matching (MNCM for short) in
G is a non-crossing matchingM such that no other non-crossing matching in G has more edges thanM .

1.2. Related work

Finding maximum matchings in general graphs or bipartite graphs has been well studied [2,3,5,8,10,14]. Glover [7]
considered computing maximum matchings in convex bipartite graphs with some industrial applications. Additional
matching applications of convex bipartite graphswere given in [12]. Amaximummatching in a convex bipartite graph can be
obtained inO(n) time [6,12,15]. Liang and Blum [11] gave a linear time algorithm for finding amaximummatching in circular
convex bipartite graphs. Motivated by applications such as 3-side switch box routing in VLSI design, the problem of finding a
maximum non-crossing matching (MNCM) in bipartite graphs was studied [9], which can be reduced to computing a longest
increasing subsequence in a sequence of size m and thus is solvable in O(m log n) time [4,18]. An improved O(m log log n)
time algorithm was given by Malucelli et al. [13] for finding an MNCM in bipartite graphs; further, they showed that in a
convex bipartite graph, an MNCM can be found in O(m + (n − k) log k) time where k is the size of the output MNCM [13],
which is O(m+ n log n) time in the worst case. Sweredoski et al. [16] used the MNCM algorithm in [13] for solving genomic
sequence problem.

In this paper, we present a new algorithm for computing an MNCM in a convex bipartite graph in O(n log n) time. Since
m can be Θ(n2), our result improves the O(m+ n log n) time solution by Malucelli et al. [13]. Our approach is based on the
algorithm in [13]; the efficiency of our algorithm hinges on new observations on the problem as well as a data structure for
efficiently processing certain frequent operations performed by the algorithm.

The rest of the paper is organized as follows. In Section 2, we briefly discuss the algorithm in [13]. In Section 3, we present
our new algorithm. Section 4 concludes the paper.

2. Preliminaries

In this section,we briefly review the algorithmbyMalucelli et al. [13], called the labeling algorithm (for the full algorithmic
and analysis details, see [13]). Our new algorithm given in Section 3 uses some ideas of this labeling algorithm.

For simplicity of discussion, we assume that the vertices of A (resp., B) are ordered on a vertical line in the plane from top
to bottom by their indices and each edge in E is represented as a line segment connecting the two corresponding vertices.
For any two non-crossing edges e(ai, bj) and e(ah, bl), we say e(ai, bj) is above e(ah, bl) if i < h and j < l, and e(ai, bj) is below
e(ah, bl) if i > h and j > l.

The labeling algorithm [13] aims to compute a label L(a, b) for each edge e(a, b) ∈ E, which is actually the cardinality
of a ‘‘partial’’ MNCM if one considers only the edges of E above and including e(a, b). After the labels for all edges of E are
computed, anMNCM can be obtained in additionalO(m) time [13]. In order to compute the labels for all edges, the algorithm
also computes a label L(b) for each vertex b ∈ B, which is equal to the currentmaximum label of all incident edges of bwhose
labels have been computed so far in the algorithm. The value of a vertex label may be increased during the algorithm but is
never decreased.

Initially, the label values for all edges of E and all vertices of B are zero. The algorithm considers the vertices in A one
by one in their index order. For each vertex ai ∈ A, there are two procedures for processing it. In the first procedure,
for each incident edge e(ai, bj) of ai, the algorithm finds the vertex bt with the maximum L(bt) such that t < j, and sets
L(ai, bj) as L(bt) + 1, i.e., L(ai, bj) = 1 + max{L(bt) | t < j}. After the labels for all incident edges of ai are computed, the
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