Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Trees with large neighborhood total domination number

Michael A. Henning*, Kirsti Wash

Department of Pure and Applied Mathematics, University of Johannesburg, Auckland Park, 2006, South Africa

ARTICLE INFO

Article history: Received 1 August 2014 Received in revised form 26 January 2015 Accepted 29 January 2015 Available online 26 February 2015

Keywords: Domination Total domination Neighborhood total domination

ABSTRACT

In this paper, we continue the study of neighborhood total domination in graphs first studied by Arumugam and Sivagnanam (2011). A neighborhood total dominating set, abbreviated NTD-set, in a graph G is a dominating set S in G with the property that the subgraph induced by the open neighborhood of the set S has no isolated vertex. The neighborhood total domination number, denoted by $\gamma_{nt}(G)$, is the minimum cardinality of a NTD-set of *G*. Every total dominating set is a NTD-set, implying that $\gamma(G) \leq \gamma_{nt}(G) \leq \gamma_t(G)$, where $\gamma(G)$ and $\gamma_t(G)$ denote the domination and total domination numbers of G, respectively. Arumugam and Sivagnanam posed the problem of characterizing the connected graphs G of order n > 3 achieving the largest possible neighborhood total domination number, namely $\gamma_{nt}(G) = \lceil n/2 \rceil$. A partial solution to this problem was presented by Henning and Rad (2013) who showed that 5-cycles and subdivided stars are the only such graphs achieving equality in the bound when n is odd. In this paper, we characterize the extremal trees achieving equality in the bound when n is even. As a consequence of this tree characterization, a characterization of the connected graphs achieving equality in the bound when n is even can be obtained noting that every spanning tree of such a graph belongs to our family of extremal trees.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we continue the study of a parameter, called the neighborhood total domination number, that is squeezed between arguably the two most important domination parameters, namely the domination number and the total domination number. A *dominating set* in a graph *G* is a set *S* of vertices of *G* such that every vertex in $V(G) \setminus S$ is adjacent to at least one vertex in *S*. The *domination number* of *G*, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of *G*. A *total dominating set*, abbreviated a TD-set, of a graph *G* with no isolated vertex is a set *S* of vertices of *G* such that every vertex in V(G) is adjacent to at least one vertex in *S*. The *total domination number* of *G*, denoted by $\gamma_t(G)$, is the minimum cardinality of a TD-set of *G*. The literature on the subject of domination parameters in graphs up to the year 1997 has been surveyed and detailed in the two books [3,4]. Total domination is now well studied in graph theory. For a recent book on the topic, see [8]. A survey of total domination in graphs can also be found in [5].

Arumugam and Sivagnanam [1] introduced and studied the concept of neighborhood total domination in graphs. A *neighbor* of a vertex v is a vertex different from v that is adjacent to v. The *neighborhood of a set S* is the set of all neighbors of vertices in S. A *neighborhood total dominating set*, abbreviated NTD-set, in a graph G is a dominating set S in G with the property that the subgraph induced by the open neighborhood of the set S has no isolated vertex. The *neighborhood total domination number* of G, denoted by $\gamma_{nt}(G)$, is the minimum cardinality of a NTD-set of G. A NTD-set of G of cardinality $\gamma_{nt}(G)$ is called a $\gamma_{nt}(G)$ -set.

http://dx.doi.org/10.1016/j.dam.2015.01.037 0166-218X/© 2015 Elsevier B.V. All rights reserved.

^{*} Corresponding author. E-mail addresses: mahenning@uj.ac.za (M.A. Henning), kirstiw@g.clemson.edu (K. Wash).

Fig. 1. A subdivided star.

Every TD-set is a NTD-set, while every NTD-set is a dominating set. Hence the neighborhood total domination number is bounded below by the domination number and above by the total domination number as first observed by Arumugam and Sivagnanam in [1].

Observation 1 ([1,6]). If *G* is a graph with no isolated vertex, then $\gamma(G) \leq \gamma_{nt}(G) \leq \gamma_t(G)$.

1.1. Terminology and notation

For notation and graph theory terminology not defined herein, we refer the reader to [3]. Let *G* be a graph with vertex set V(G) of order n = |V(G)| and edge set E(G) of size m = |E(G)|, and let v be a vertex in *V*. We denote the *degree* of v in *G* by $d_G(v)$. The minimum degree among the vertices of *G* is denoted by $\delta(G)$. A vertex of degree one is called a *leaf* and its neighbor a *support vertex*. We denote the set of leaves in *G* by L(G), and the set of support vertices by S(G). A support vertex adjacent to two or more leaves is a *strong support vertex*. For a set $S \subseteq V$, the subgraph induced by *S* is denoted by G[S]. A 2-*packing* in *G* is a set of vertices that are pairwise at distance at least 3 apart in *G*.

A cycle and path on *n* vertices are denoted by C_n and P_n , respectively. A star on $n \ge 2$ vertices is a tree with a vertex of degree n - 1 and is denoted by $K_{1,n-1}$. A double star is a tree containing exactly two vertices that are not leaves (which are necessarily adjacent). A subdivided star is a graph obtained from a star on at least two vertices by subdividing each edge exactly once. The subdivided star obtained from a star $K_{1,4}$, for example, is shown in Fig. 1. We note that the smallest two subdivided stars are the paths P_3 and P_5 . Let \mathcal{F} be the family of all subdivided stars. Let $F \in \mathcal{F}$. If $F = P_3$, we select a leaf of F and call it the link vertex of F, while if $F \neq P_3$, the link vertex of F is the central vertex of F.

The open neighborhood of v is the set $N_G(v) = \{u \in V \mid uv \in E\}$ and the closed neighborhood of v is $N_G[v] = \{v\} \cup N_G(v)$. For a set $S \subseteq V$, its open neighborhood is the set $N_G(S) = \bigcup_{v \in S} N_G(v)$, and its closed neighborhood is the set $N_G[S] = N_G(S) \cup S$. If the graph G is clear from the context, we simply write d(v), N(v), N[v], N(S) and N[S] rather than $d_G(v)$, $N_G(v)$, $N_G(v)$, $N_G(S)$ and $N_G[S]$, respectively. As observed in [6] a NTD-set in G is a set S of vertices such that N[S] = V and G[N(S)] contains no isolated vertex.

A rooted tree distinguishes one vertex r called the root. For each vertex $v \neq r$ of T, the parent of v is the neighbor of v on the unique (r, v)-path, while a child of v is any other neighbor of v. A descendant of v is a vertex u such that the unique (r, u)-path contains v. Let C(v) and D(v) denote the set of children and descendants, respectively, of v, and let $D[v] = D(v) \cup \{v\}$. The maximal subtree at v is the subtree of T induced by D[v], and is denoted by T_v .

2. Known results

The following upper bound on the neighborhood total domination number of a connected graph in terms of its order is established in [6].

Theorem 2 ([6]). If G is a connected graph of order $n \ge 3$, then $\gamma_{nt}(G) \le (n+1)/2$.

In this paper we consider the following problem posed by Arumugam and Sivagnanam [1] to characterize the connected graphs of largest possible neighborhood total domination number.

Problem 1 ([1]). Characterize the connected graphs *G* of order *n* for which $\gamma_{nt}(G) = \lceil n/2 \rceil$.

A partial solution to this problem was presented by Henning and Rad [6] who provided the following characterization in the case when n is odd.

Theorem 3 ([6]). Let $G \neq C_5$ be a connected graph of order $n \geq 3$. If $\gamma_{nt}(G) = (n+1)/2$, then $G \in \mathcal{F}$.

As first observed in [6], a characterization in the case when n is even and the minimum degree is at least 2 follows readily from a result on the restrained domination number of a graph due to Domke, Hattingh, Henning and Markus [2]. Let B_1, B_2, \ldots, B_5 be the five graphs shown in Fig. 2.

Theorem 4 ([6]). Let $G \neq C_5$ be a connected graph of order $n \ge 4$ with $\delta(G) \ge 2$. If $\gamma_{nt}(G) = n/2$, then $G \in \{B_1, B_2, B_3, B_4, B_5\}$.

3. The family \mathcal{T} of trees

In this section we define a family of trees \mathcal{T} as follows. Let T_0 be an arbitrary tree. Let T_1 be the tree obtained from T_0 by the following operation: for each vertex $x \in V(T_0)$, either add a new vertex and an edge joining it to x or add a new path P_3

Download English Version:

https://daneshyari.com/en/article/419288

Download Persian Version:

https://daneshyari.com/article/419288

Daneshyari.com