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a b s t r a c t

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). The R-graph of
a graph G, denoted by R(G), is the graph obtained from G by adding a vertex ve and then
joining ve to the end vertices of e for each e ∈ E(G). Let G1 and G2 be two vertex disjoint
graphs. TheR-vertex joinofG1 andG2, denotedbyG1⟨v⟩G2, is the graphobtained fromR(G1)
andG2 by joining every vertex ofV (G1)with every vertex ofV (G2). The R-edge join ofG1 and
G2, denoted by G1⟨e⟩G2, is the graph obtained from R(G1) and G2 by joining every vertex
of I(G1) with every vertex of V (G2), where I(G1) is the set of the added vertices of R(G1).
In this paper, we formulate the resistance distances and the Kirchhoff index of G1⟨v⟩G2 and
G1⟨e⟩G2 respectively.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple and undirected. Let G = (V (G), E(G)) be a graph with vertex set V (G)
and edge set E(G). Let di be the degree of vertex i in G and DG = diag(d1, d2, . . . , d|V (G)|) the diagonal matrix with all ver-
tex degrees of G as its diagonal entries. Let AG denote the adjacency matrix of G. The Laplacian matrix of G is defined as
LG = DG − AG. We use µ1(G) ≥ µ2(G) ≥ · · · ≥ µ|V (G)|(G) = 0 to denote the eigenvalues of LG. If G is connected, then any
principal submatrix of LG is nonsingular.

Let G be a connected graph. The resistance distance between any two vertices u and v in G is defined to be the effective
resistance between themwhen unit resistors are placed on every edge of G. The Kirchhoff index of G is the sum of resistance
distances between all pairs of vertices ofG. As usual, letΩuv(G)denote the resistance distance between u and v inG andKf(G)
denote the Kirchhoff index of G. Up till now, many results on the resistance distance and the Kirchhoff index are obtained.
See [2,3,5,7,11,12,15,17–26,28,29] and the references therein to know more.

The R-graph [9,16] of a graph G, denoted by R(G), is the graph obtained from G by adding a vertex ve and then joining ve
to the end vertices of e for each e ∈ E(G). We use I(G) to denote the set of all added vertices of R(G). Based on R-graph, we
define two new graph operations as follows.

Definition 1.1. Let G1 and G2 be two vertex disjoint graphs. The R-vertex join of G1 and G2, denoted by G1⟨v⟩G2, is the graph
obtained from R(G1) and G2 by joining every vertex of V (G1) with every vertex of V (G2).
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Fig. 1. An example of R-vertex join and R-edge join.

Definition 1.2. Let G1 and G2 be two vertex disjoint graphs. The R-edge join of G1 and G2, denoted by G1⟨e⟩G2, is the graph
obtained from R(G1) and G2 by joining every vertex of I(G1) with every vertex of V (G2).

Example 1.3. Let Pn denote a path of order n. Fig. 1 depicts the R-vertex join P4⟨v⟩P2 and R-edge join P4⟨e⟩P2, respectively.

In this paper, we formulate the resistance distances and the Kirchhoff index of G1⟨v⟩G2 and G1⟨e⟩G2, respectively.

2. Preliminaries

Let M be a square matrix. The {1}-inverse of M is a matrix X such that MXM = M . If M is singular, then M has infinitely
many {1}-inverses [4]. The group inverse of M , denoted by M#, is the unique matrix X such that MXM = M , XMX = X , and
MX = XM . It is known [4,6] that M# exists if and only if rank(M) = rank(M2). If M is real symmetric, then M# exists and
M# is a symmetric {1}-inverse of M . Actually,M# is equal to the Moore–Penrose inverse ofM ifM is symmetric [6,14].

LetM(1) denote any {1}-inverse of a matrixM and let (M)uv denote the (u, v)-entry ofM .

Lemma 2.1 ([1,6]). Let G be a connected graph. Then
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For a vertex i of a graph G, let Γ (i) denote the set of all neighbors of i in G.

Lemma 2.2 ([7,8]). Let G be a connected graph. For any i, j ∈ V (G),

Ωij(G) = d−1
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Let 1n denote the all-ones column vector of dimension n. We will often use 1 to denote an all-ones column vector if the
dimension can be read from the context.

Lemma 2.3 ([7]). Let L =
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
be the Laplacian matrix of a connected graph. If each column vector of LT2 is −1 or a zero

vector, then N =
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is a symmetric {1}-inverse of L, where S = L3 − LT2L

−1
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Lemma 2.4 ([27]). Let M =


A B
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be a nonsingular matrix. If A is nonsingular, then
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=


A−1

+ A−1BS−1CA−1
−A−1BS−1

−S−1CA−1 S−1


,

where S = D − CA−1B.

Let In be the identity matrix of size n, and Js×t the s × t matrix with all entries equal to one.

Lemma 2.5 ([7]). Let G be a graph of order n. For any a > 0, we have
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