Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note On the Wiener index of generalized Fibonacci cubes and Lucas cubes

Sandi Klavžar^{a,b}, Yoomi Rho^{c,*}

^a Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

^b Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

^c Department of Mathematics, University of Incheon, Republic of Korea

ARTICLE INFO

Article history: Received 17 August 2013 Accepted 2 February 2015 Available online 4 March 2015

Keywords: Hypercube Generalized Fibonacci cube Generalized Lucas cube Isometric embedding Wiener index

ABSTRACT

The generalized Fibonacci cube $Q_d(f)$ is the graph obtained from the *d*-cube Q_d by removing all vertices that contain a given binary word f as a factor; the generalized Lucas cube

 $Q_d(f)$ is obtained from Q_d by removing all the vertices that have a circulation containing

f as a factor. In this paper the Wiener index of $Q_d(1^s)$ and the Wiener index of $Q_d(1^s)$ are expressed as functions of the order of the generalized Fibonacci cubes. For the case $Q_d(111)$ a closed expression is given in terms of Tribonacci numbers. On the negative side, it is proved that if for some d, the graph $Q_d(f)$ (or $Q_d(f)$) is not isometric in Q_d , then for any positive integer k, for almost all dimensions d' the distance in $Q_{d'}(f)$ (resp. $Q_{d'}(f)$) can exceed the Hamming distance by k.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Wiener index of a graph is one of the most studied graph invariants, the main reason for this fact is its vast applicability in theoretical chemistry, cf. the comprehensive surveys [2,3] on the Wiener index of rather specific classes of graphs-trees and hexagonal systems. But this index is also extensively investigated elsewhere, [14,17,21,23] is just a selection of recent papers that indicates a wide variety of topics studied with respect to the Wiener index. Moreover, it is an intrinsic indicator of a potential applicability of (interconnection) networks. In this respect the average distance [1] is more relevant, however the studies of the Wiener index and the average distance are equivalent because for a given graph *G*, these invariants differ only by the factor $\binom{|V(G)|}{2}$.

In [13] it was demonstrated that each of the Wiener index of Fibonacci cubes and Lucas cubes can be expressed in a closed form. The first of these classes of graphs was introduced as a model for interconnection network [7] and received a lot of attention afterwards, see the survey [11]. Lucas cubes [19] can be considered as a symmetrization of Fibonacci cubes and have found their role in theoretical chemistry [24].

Fibonacci cubes and Lucas cubes were extended to generalized Fibonacci cubes [9] and to generalized Lucas cubes [10], respectively. (We note that the term "generalized Fibonacci cubes" was used in [8] (see also [18,22]) for a restricted family of the graphs from [9].) The main goal of this paper is to extend the results from [13] on the Wiener index of Fibonacci (Lucas)

* Corresponding author. E-mail addresses: sandi.klavzar@fmf.uni-lj.si (S. Klavžar), rho@incheon.ac.kr (Y. Rho).

http://dx.doi.org/10.1016/j.dam.2015.02.002 0166-218X/© 2015 Elsevier B.V. All rights reserved.

cubes to those for generalized Fibonacci (Lucas) cubes that admit isometric embeddings into hypercubes. Such potential classes were identified in [9.10].

We proceed as follows. In the rest of this section we formally introduce the concepts needed in this paper. In the following

section the Wiener index of $Q_d(1^s)$ (Theorem 2.3) and the Wiener index of $Q_d(1^s)$ (Theorem 2.5) are expressed as sums involving $|V(Q_{d'}(1^s))|$ for some d'. In the case of $Q_d(111)$ it is shown how a closed expression for its Wiener index can be

obtained. In the final section we show that if $Q_d(f)$ or $Q_d(f)$ is not isometric in Q_d , then in almost all dimensions the distance function is arbitrarily larger than the corresponding Hamming distance.

Graph considered here are finite, simple, and connected. For a (connected) graph G, the distance $d_G(u, v)$ (or d(u, v) if G is clear from the context) between vertices u and v is the usual shortest path distance. A subgraph H of a graph G is isometric if $d_H(u, v) = d_G(u, v)$ holds for all $u, v \in V(H)$. The Wiener index, W(G), of a graph G is defined as $\sum d(u, v)$, where the summation runs over all unordered pairs $\{u, v\}$ of vertices of G.

Let $B = \{0, 1\}$ and call the elements of B bits. An element of B^d is called a (binary) word of length d. We will use the product notation for words meaning concatenation. For example, $1^{s}0^{t}$ is the word of length s + t whose first s bits are 1 and last t bits are 0. A word f is a factor of a word u if u = vfw for some words v and w.

The *d*-cube Q_d is the graph whose vertices are all the binary words of length *d*, two vertices are adjacent if they differ in exactly one bit. The Hamming distance H(u, v) between binary words u and v (of equal length) is the number of bits in which they differ. It is well-known that $d_{Q_d}(u, v) = H(u, v)$ holds for any $u, v \in V(Q_d)$. If f is an arbitrary binary word and d is a positive integer, then the generalized Fibonacci cube $Q_d(f)$ is the graph obtained from Q_d by removing all the vertices that

contain f as a factor. Similarly, the generalized Lucas cube $Q_d(f)$ is the graph obtained from Q_d by removing all the vertices

that have a circulation containing f as a factor. The Fibonacci cube Γ_d is the graph $Q_d(11)$ and the Lucas cube Λ_d is $Q_d(11)$. If $b = b_1 \dots b_d$ is a binary word, then let \overline{b} denote its binary complement and let $b^R = b_d \dots b_1$ be the reverse of b. It is

easy to see (cf. [9,10]) that if f is an arbitrary binary word, then $Q_d(f) \cong Q_d(\overline{f}) \cong Q_d(f^R)$ and $Q_d(\overline{f}) \cong Q_d(\overline{f}) \cong Q_d(\overline{f})$ where \cong stands for graph isomorphism. We will implicitly use these facts when considering all possible words.

2. The Wiener index of $Q_d(1^s)$ and $Q_d(\overline{1^s})$

In this section we extend results from [13] on the Wiener index of $Q_d(11)$ and $Q_d(11)$ to $Q_d(1^s)$ and $Q_d(1^s)$, respectively. For this sake we will apply the following result from [12] (see also [15] for its wide generalization). If G is a subgraph of Q_d , then set $W_{(i,\chi)}(G) = \{u = u_1 \dots u_d \in V(G) \mid u_i = \chi\}$ for $1 \le i \le d, 0 \le \chi \le 1$.

Theorem 2.1 ([12]). If G is an isometric subgraphs of Q_d , then

$$W(G) = \sum_{i=1}^{d} |W_{(i,0)}(G)| \cdot |W_{(i,1)}(G)|$$

If $d \ge 1$ and $s \ge 2$, then let $x_d^{(s)} = |V(Q_d(1^s))|$. For any $s \ge 2$ we also set $x_0^{(s)} = 1$ and $x_{-1}^{(s)} = 1$.

Lemma 2.2. Let $d \ge 1$ and $s \ge 2$. Then $x_d^{(s)} = 2^d$ for $1 \le d \le s - 1$, $x_s^{(s)} = 2^s - 1$, and $x_d^{(s)} = x_{d-1}^{(s)} + x_{d-2}^{(s)} + \cdots + x_{d-s}^{(s)}$ for d > s + 1.

Proof. If $d \le s - 1$, then $Q_d(1^s) = Q_d$, hence the first assertion follows. $Q_d(1^s)$ is obtained from Q_d by deleting the vertex 1^s, therefore $x_s^{(s)} = 2^s - 1$. Let now $d \ge s + 1$. Then there are $x_{d-1}^{(s)}$ vertices u of $Q_d(1^s)$ with $u_1 = 0$. The other vertices can be partitioned into those starting with 10 and with 11, respectively. The number of the former ones is $x_{d-2}^{(s)}$, while the other vertices can be partitioned into those starting with 110 and with 111, respectively. Continuing in this manner, and having in mind that 1^s is not a factor of a vertex of $Q_d(1^s)$, the last assertion follows.

Theorem 2.3. For any $d \ge 1$ and any $s \ge 2$,

$$W(Q_d(1^s)) = \sum_{i=1}^d \left(x_{i-1}^{(s)} x_{d-i}^{(s)} \left(\sum_{j=2}^s x_{i-j}^{(s)} \left(\sum_{k=(d-i-1)-(s-j)}^{d-i-1} x_k^{(s)} \right) \right) \right).$$

Proof. From [9, Proposition 3.1] we know that $Q_d(1^s)$ is an isometric subgraph of Q_d , hence Theorem 2.1 applies to $Q_d(1^s)$. We first observe that $|W_{(i,0)}(Q_d(1^s))| = x_{i-1}^{(s)} x_{d-i}^{(s)}$ because the factors before and after the *i*th bit are arbitrary. This assertion also holds for i = 1 and for i = d since we have set $x_0^{(s)} = 1$. Consider now the set of vertices $W_{(i,1)}(Q_d(1^s))$ and let u be an arbitrary vertex with $u_i = 1$. Suppose that u_i is preceded with r ones, where $0 \le r \le s - 2$, so that $u_{i-r-1} = 0$. Then the first i - r - 2 bits are arbitrary, that is, there are $x_{i-r-2}^{(s)}$ such factors for $0 \le r \le s - 2$. For a fixed r, Download English Version:

https://daneshyari.com/en/article/419294

Download Persian Version:

https://daneshyari.com/article/419294

Daneshyari.com