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a b s t r a c t

A hypergraph H = (V , E) is called (1, k)-sparse, for some integer k, if each subset X ⊆ V
with |X | ≥ k spans at most |X |−k hyperedges. If, in addition, |E| = |V |−k holds, then H is
(1, k)-tight.Wedevelop a new inductive construction of 4-regular (1, 3)-tight hypergraphs
and use it to solve problems in combinatorial rigidity.

We give a combinatorial characterization of generically projectively rigid hypergraphs
on the projective line. Our result also implies an inductive construction of generically
minimally affinely rigid hypergraphs in the plane. Based on the rank function of the
corresponding countmatroid on the edge set ofH we obtain combinatorial proofs for some
sufficient conditions for the generic affine rigidity of hypergraphs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Given a set of objects (points, lines, bodies, etc.) in Rd satisfying certain geometric constraints (pairwise distances, direc-
tions, incidences, etc.), a basic question is whether (locally or globally) the given constraints uniquely determine the whole
configuration up to trivial transformations (rigid motions, dilations, etc.) of the whole set. A well-studied example is the
rigidity problem of d-dimensional bar-and-joint frameworks, where the objects are points and the constraints are pairwise
distances. In several cases (local or global) uniqueness depends only on the underlying combinatorial structure (for example,
the graph of the framework) if the objects are in sufficiently general position.

Our goal is to provide combinatorial tools for attacking such problems in which the underlying combinatorial structure
is a hypergraph: projective rigidity, affine rigidity, and scene analysis.

We develop a new inductive construction of 4-regular (1, 3)-tight hypergraphs. By using this result we give a combina-
torial characterization of generically projectively rigid hypergraphs on the projective line, whichwas conjectured by George
and Ahmed [2]. Our result also implies an inductive construction of generically minimally affinely rigid hypergraphs in the
plane. Based on the rank function of the corresponding count matroid on the edge set of H we obtain combinatorial proofs
for some sufficient conditions for the generic affine rigidity of hypergraphs, due to Gortler, Gotsman, Liu, and Thurston [3]
and Zha and Zhang [9], respectively.

✩ A preliminary version of this paper appeared in the Proceedings of the 7th Japanese–Hungarian Symposium on Discrete Mathematics and its
Applications, Kyoto, May 2011.
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Fig. 1. A 2-extension operation on a 4-uniform hypergraph.

2. Inductive constructions

Let H = (V , E) be a hypergraph and let X ⊆ V . We use iH(X) to denote the number of edges induced by X in H . We say
that H is (1, k)-sparse, for some integer k, if iH(X) ≤ |X | − k for all X ⊆ V with |X | ≥ k. A (1, k)-sparse hypergraph with
|E| = |V | − k is called (1, k)-tight. The hypergraph is calledm-uniform, for some positive integerm, if each hyperedge e ∈ E
contains exactly m vertices. The degree of a vertex v in H is denoted by dH(v) and the number of edges of H that contain a
given pair v, w ∈ V is denoted by dH(v, w). We may omit the subscript referring to H if it is clear from the context.

We introduce a set of operations on (k+ 1)-uniform hypergraphs which preserve (1, k)-sparsity and which can be used
to generate all (k + 1)-uniform (1, k)-tight hypergraphs from a single hyperedge, for all 1 ≤ k ≤ 3.

Let H = (V , E) be a (k + 1)-uniform hypergraph, let j be an integer with 0 ≤ j ≤ k − 1, and let v ∈ V be a vertex with
d(v) ≥ j. The j-extension operation at vertex v picks j hyperedges e1, e2, . . . , ej incident with v, adds a new vertex z to H as
well as a new hyperedge e of size k + 1 incident with both v and z, and replaces ei by ei − v + z for all 1 ≤ i ≤ j. Thus the
new vertex z has degree j + 1 in the extended hypergraph. See Fig. 1. Note that a 0-extension operation simply adds a new
vertex z and a new hyperedge of size k + 1 incident with z.

The j-extension operation preserves sparsity in the following sense. The simple proof of the next lemma is omitted.

Lemma 2.1. Let H = (V , E) be a (k + 1)-uniform (1, k)-sparse ((1, k)-tight) hypergraph and let H ′ be obtained from H by a
j-extension operation, where 0 ≤ j ≤ k − 1. Then H ′ is also (1, k)-sparse ((1, k)-tight, respectively).

The inverse operation of j-extension can be defined as follows. LetH = (V , E) be a (k+1)-uniformhypergraph. Consider a
vertex z ∈ V with d(z) = j+1, for some 0 ≤ j ≤ k−1, and let v be a neighbour of z inH with d(z, v) = 1. Let e1, e2, . . . , ej+1
be the edges incident with z, where e1 is the unique edge which is incident with v, too. The j-reduction operation at vertex z
on neighbour v deletes e1 and replaces ei by ei − z + v for all 2 ≤ i ≤ j+ 1. Observe that the inverse of j-extension is indeed
j-reduction.

We say that a j-reduction operation in a (k + 1)-uniform (1, k)-sparse hypergraph H is admissible if the hypergraph
obtained from H by the operation is also (1, k)-sparse. To obtain our inductive construction by induction we shall show that
each (k + 1)-uniform (1, k)-sparse hypergraph H (for k up to 3) has a vertex z of degree at most k and that there exists an
admissible (d(z) − 1)-reduction at z.

Note that the 2-uniform (1, 1)-tight hypergraphs are the trees, for which the existence of a vertex of degree one (a leaf)
and an admissible 0-reduction (leaf deletion) is straightforward. The case when k = 2 is more complicated, but still not
very difficult, so we shall omit the proof of this case. Instead, we shall focus on 4-regular (1, 3)-tight hypergraphs (see
Theorem 2.8 below, which is the main result of this section).

It should also be noted that the above proof strategy does not work when k ≥ 4. To see this consider the (1, 4)-tight
5-uniform hypergraph H = (V , E) with V = {v1, v2, . . . , v7} and E = {(v1, v2, v3, v4, v7), (v3, v4, v5, v6, v7), (v1, v2, v5,
v6, v7)}. We have d(v7) = 3 but each neighbour vi of v7 has d(v7, vi) ≥ 2, showing that no 2-reduction can be performed at
v7. Hence an inductive construction for higher values of k is probably more difficult to obtain.

Before dealing with the case of (1, 3)-sparse hypergraphs we prove some preliminary lemmas about (1, k)-sparse
hypergraphs in general. The next lemma is easy to verify by observing that the contribution of a hyperedge to the right
hand side of inequality (1) below cannot be less than its contribution to the left hand side.

Lemma 2.2. Let H = (V , E) be a hypergraph and let X, Y ⊆ V be subsets of vertices. Then

i(X) + i(Y ) ≤ i(X ∪ Y ) + i(X ∩ Y ). (1)

Let H = (V , E) be a (k + 1)-uniform (1, k)-sparse hypergraph. We say that a subset X ⊆ V is critical if i(X) = |X | − k
holds. A subset Y ⊆ V is called semi-critical if i(Y ) ≥ |Y | − k − 1.

Lemma 2.3. Let H = (V , E) be a (k+1)-uniform (1, k)-sparse hypergraph and let X, Y ⊆ V be subsets of vertices. If |X∩Y | ≥ k
and

(i) if X and Y are both critical, then X ∪ Y is also critical,
(ii) if X is critical and Y is semi-critical, then X ∪ Y is semi-critical,
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