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the smallest integer k such that G has a total k-coloring. In this paper, it is proved that if G is
a planar graph with maximum degree A > 7 and without chordal 6-cycles, then the total
chromatic number of Gis A + 1.

© 2014 Elsevier B.V. All rights reserved.
Keywords:

Total coloring
Planar graph
Cycle

Chords

1. Introduction

All graphs considered in this paper are simple, finite and undirected, and we follow 2] for the terminologies and notations
not defined here. Let G be a graph. We use V(G), E(G), A(G) and §(G) (or simply V, E, A and §) to denote the vertex set, the
edge set, the maximum degree and the minimum degree of G, respectively.

A total k-coloring of a graph G is a coloring of V U E using k colors such that no two adjacent or incident elements receive
the same color. The total chromatic number x”(G) of G is the smallest integer k such that G has a total k-coloring. Clearly,
x”(G) > A + 1.Behzad [1] and Vizing [14] posed independently the following famous conjecture, which is known as the
total coloring conjecture (TCC).

Conjecture A. Forany graphG, A+ 1 < x"(G) < A+ 2.

This conjecture was confirmed for general graphs with A < 5. For its history, readers can see [19]. For planar graphs, the
only open case is A = 6 (see [8,11]). Interestingly, planar graphs with high maximum degree allow a stronger assertion,
that is, every planar graph with high maximum degree A has a total (A + 1)-coloring. This result was first established in [3]
for A > 14, which was extended to A > 12 [4], A > 10[15], and finally to A > 9[9]. Recently, Shen and Wang [12] proved
that if G is a planar graph with A = 8 and G contains no chordal 5-cycles or no chordal 6-cycles, then x”(G) = A + 1.
Wang and Wu [17] proved that if G is a planar graph with A > 7 and every vertex is incident with at most one triangle, then
x"(G) = A+ 1.Wang and Wu [18] proved that if G is a planar graph with A > 7 and without 4-cycles, then x"(G) = A+1
(later, it is extended to A > 6 by Shen and Wang [13]). Wang et al. [ 16] proved that if G is a planar graph with A > 7 and
without chordal 5-cycles, then x”(G) = A + 1. In this paper, we obtain that if G is a planar graph with A > 7 and without
chordal 6-cycles, then x”(G) = A + 1. To prove the result, we first establish various structural properties of G. Relying on
these properties, we use the discharging method in the detailed proof to obtain a contradiction.
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Fig. 1. Reducible configurations.
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2. Main result and its proof

We will introduce some more notations and definitions here for convenience. Let G = (V, E, F) be a plane graph, where
F is the face set of G. For a vertex v € V, let N(v) denote the set of vertices adjacent to v, and let d(v) = |[N(v)| denote the
degree of v; and for a face f, the degree of a face f, denoted by d(f), is the number of edges incident with it, where each
cut-edge is counted twice. A k-vertex, a k*-vertex or a k~-vertex is a vertex of degree k, at least k or at most k, respectively.
Similarly, a k-face or a k™ -face is a face of degree k or at least k, respectively. Let n; (v) be the number of t-vertices adjacent
to a vertex v, and f,(v) the number of k-faces incident with v. Especially, let f3(v) = t. Let vy, v4, ..., vy be neighbors
of v in an anticlockwise order. Let f; be face incident with v, v; and v;,4, for all i such thati € {1, 2, ..., d}. Note that
all the subscripts in the paper are taken modulo d. For convenience, (dy, d>, ..., d,) denotes a cycle (or a face) whose
boundary vertices are of degree dq, d, . .., d, in the anticlockwise order. Specially, (i, j*, k*)-face is a 3-face uvw such
thatd(u) =i <j <d(w) <k <d(w).

Theorem 1. Let G be a planar graph without chordal 6-cycles. If A > 7, then x"(G) = A + 1.

Proof. In [12], Theorem 1 was established for A = 8. So we assume that A = 7. Let G be a minimal counterexample to
Theorem 1 in terms of the number of vertices and edges, respectively. Then every proper subgraph of G has a total 8-coloring,
but G is not. We first show some known properties on G.

(a) Gis 2-connected and the boundary of each face in G is exactly a cycle (see [5]);
(b) The subgraph G,; of G induced by all edges joining 2-vertices to 7-vertices is a forest (see [3,5]);
For any component G,7, we root it at a 7-vertex. In this case, every 2-vertex has exactly one parent and exactly one
child, which are 7-vertices.
(c) G contains no edge uv with min{d(u), d(v)} < L%J and d(u) + d(v) < A + 1(see [5]);
(d) G contains no 3-face incident with more than one 4-vertex (see [10]);
(e) Ifvis a7-vertex of G with ny(v) > 1, then ng+ (v) > 1 (see [6]).

Lemma 2. G contains no configurations depicted in Fig. 1, where the vertices marked by e have no other neighbors in G.

Proof. The proof that G contains no configurations depicted in Fig. 1(1),(2),(4),(5) can be found in [7]. The proof that G
contains no configuration depicted in Fig. 1(3) and (6) can be found in [5,16], respectively. B

Lemma 3. G contains no configurations depicted in Fig. 2, where the vertices marked by e have no other neighbors in G.

Proof. Suppose that G contains a configuration depicted in Fig. 2(1). Then G’ = G — v, has a total-8-coloring ¢ with the
colorsetC = {1, 2..., 8} by the minimality of G. Erase the color on v,. For avertexx € V(G),let C(x) = {¢(xy) : y € N(x)}.
First, we color vv;, as follows. If | C(v,)UC(v)| < 7, then we can color vv, with a colorin C\ ({¢ (v) }UC(v5)UC(v)). Otherwise,
without loss of generality(WLOG), we assume that (¢(vv1), ¢ (vvs3), @(vVvs), @(VVs), (V2Y), (V2V3), P(V2V1), (V) =
(1,2,3,4,5,6,7,8). If C(vg) # {3,5,6,7}, then we obtain a total-8-coloring of G by recoloring vv, with a color in
{5,6,7} \ C(vy), and coloring vv, with 3. Otherwise, if ¢(v4) = 1, then we exchange the colors of edges v3v4 and vvs,
color vv, with 2. Otherwise, we exchange the colors of edges v,v, and vvy, color vvy with 1 and color vv, with 3. Hence we
obtain a total-8-coloring v of G in which v, is uncolored.

Now we begin to recolor v,. Let @ be the color on vv, and D = C(v3) U {e, 8} U {p(x) : x € N(v2)}.If [D| < 8, then we
obtain a total-8-coloring of G by recoloring v, with a color in C\ D, a contradiction. Otherwise C = D. WLOG, we assume that
v2Y, U2V1, Vo0, VU3, Y, Uy, U, U3 is colored with 1, 2, 3,4, 5, 6, 7, 8. First, we have 5, 6, 8 € C(v), for otherwise, we recolor
vV, with a color in {5, 6, 8} \ C(v), and v, with 3, a contradiction. Since d(v) = 5 and {3, 5, 6, 8} C C(v), color 2 or 4 does
not appear at v, WLOG, 4 & C(v). If ¢(vv3) € {5, 6}, then we exchange the colors of edges v,v3 and vvs, recolor v, with 4.
Otherwise, p(vv3) € {1, 2}. If o(vv3) = 1, then we exchange the colors of edges vv; and v,vq, color v, with 2. Otherwise,
we exchange the colors of edges vv; and v,v1, vov3 and vvs, and recolor v, with 4, a contradiction, too.

Suppose that G contains a configuration depicted in Fig. 2(2), where d(v) = 7. Then G’ = G — vv; has a total-8-coloring
¢. Erase the colors on all black 3™ -vertices. For a vertex x € V(G), let C(x) = {¢p(xy) : y € NX)}. lf o(v7x7) € C(v) U{p(v)},
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