Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Total colorings of planar graphs without chordal 6-cycles*

Bing Wang^{a,b}, Jian-Liang Wu^{b,*}, Hui-Juan Wang^b

^a Department of Mathematics, Zaozhuang University, Shandong, 277160, China
^b School of Mathematics, Shandong University, Jinan, 250100, China

ARTICLE INFO

Article history: Received 30 September 2012 Received in revised form 7 February 2014 Accepted 11 February 2014 Available online 13 March 2014

Keywords: Total coloring Planar graph Cycle Chords

ABSTRACT

A total *k*-coloring of a graph *G* is a coloring of $V(G) \cup E(G)$ using *k* colors such that no two adjacent or incident elements receive the same color. The total chromatic number of *G* is the smallest integer *k* such that *G* has a total *k*-coloring. In this paper, it is proved that if *G* is a planar graph with maximum degree $\Delta \ge 7$ and without chordal 6-cycles, then the total chromatic number of *G* is $\Delta + 1$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected, and we follow [2] for the terminologies and notations not defined here. Let *G* be a graph. We use V(G), E(G), $\Delta(G)$ and $\delta(G)$ (or simply *V*, *E*, Δ and δ) to denote the vertex set, the edge set, the maximum degree and the minimum degree of *G*, respectively.

A total k-coloring of a graph G is a coloring of $V \cup E$ using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number $\chi''(G)$ of G is the smallest integer k such that G has a total k-coloring. Clearly, $\chi''(G) \ge \Delta + 1$. Behzad [1] and Vizing [14] posed independently the following famous conjecture, which is known as the total coloring conjecture (TCC).

Conjecture A. For any graph G, $\Delta + 1 \le \chi''(G) \le \Delta + 2$.

This conjecture was confirmed for general graphs with $\Delta \leq 5$. For its history, readers can see [19]. For planar graphs, the only open case is $\Delta = 6$ (see [8,11]). Interestingly, planar graphs with high maximum degree allow a stronger assertion, that is, every planar graph with high maximum degree Δ has a total (Δ + 1)-coloring. This result was first established in [3] for $\Delta \geq 14$, which was extended to $\Delta \geq 12$ [4], $\Delta \geq 10$ [15], and finally to $\Delta \geq 9$ [9]. Recently, Shen and Wang [12] proved that if *G* is a planar graph with $\Delta = 8$ and *G* contains no chordal 5-cycles or no chordal 6-cycles, then $\chi''(G) = \Delta + 1$. Wang and Wu [17] proved that if *G* is a planar graph with $\Delta \geq 7$ and every vertex is incident with at most one triangle, then $\chi''(G) = \Delta + 1$. Wang and Wu [18] proved that if *G* is a planar graph with $\Delta \geq 7$ and without 4-cycles, then $\chi''(G) = \Delta + 1$ (later, it is extended to $\Delta \geq 6$ by Shen and Wang [13]). Wang et al. [16] proved that if *G* is a planar graph with $\Delta \geq 7$ and without chordal 5-cycles, then $\chi''(G) = \Delta + 1$. In this paper, we obtain that if *G* is a planar graph with $\Delta \geq 7$ and without chordal 6-cycles, then $\chi''(G) = \Delta + 1$. To prove the result, we first establish various structural properties of *G*. Relying on these properties, we use the discharging method in the detailed proof to obtain a contradiction.

http://dx.doi.org/10.1016/j.dam.2014.02.004 0166-218X/© 2014 Elsevier B.V. All rights reserved.

 $^{^{\}circ}$ This work is supported by the National Natural Foundation of China (No. 11271006) and the Natural Science Foundation of Shandong Province (ZR2012AL08).

^{*} Corresponding author. Tel.: +86 53187906969; fax: +86 053188364654.

E-mail addresses: jlwu65@sina.com, jlwu@sdu.edu.cn (J.-L. Wu).

Fig. 1. Reducible configurations.

2. Main result and its proof

We will introduce some more notations and definitions here for convenience. Let G = (V, E, F) be a plane graph, where F is the face set of G. For a vertex $v \in V$, let N(v) denote the set of vertices adjacent to v, and let d(v) = |N(v)| denote the degree of v; and for a face f, the degree of a face f, denoted by d(f), is the number of edges incident with it, where each cut-edge is counted twice. A k-vertex, a k^+ -vertex or a k^- -vertex is a vertex of degree k, at least k or at most k, respectively. Similarly, a k-face or a k^+ -face is a face of degree k or at least k, respectively. Let $n_t(v)$ be the number of t-vertices adjacent to a vertex v, and $f_k(v)$ the number of k-faces incident with v. Especially, let $f_3(v) = t$. Let v_1, v_2, \ldots, v_d be neighbors of v in an anticlockwise order. Let f_i be face incident with v, v_i and v_{i+1} , for all i such that $i \in \{1, 2, \ldots, d\}$. Note that all the subscripts in the paper are taken modulo d. For convenience, (d_1, d_2, \ldots, d_n) denotes a cycle (or a face) whose boundary vertices are of degree d_1, d_2, \ldots, d_n in the anticlockwise order. Specially, (i, j^+, k^+) -face is a 3-face uvw such that $d(u) = i \le j \le d(v) \le k \le d(w)$.

Theorem 1. Let *G* be a planar graph without chordal 6-cycles. If $\Delta \ge 7$, then $\chi''(G) = \Delta + 1$.

Proof. In [12], Theorem 1 was established for $\Delta = 8$. So we assume that $\Delta = 7$. Let *G* be a minimal counterexample to Theorem 1 in terms of the number of vertices and edges, respectively. Then every proper subgraph of *G* has a total 8-coloring, but *G* is not. We first show some known properties on *G*.

- (a) G is 2-connected and the boundary of each face in G is exactly a cycle (see [5]);
- (b) The subgraph G_{27} of *G* induced by all edges joining 2-vertices to 7-vertices is a forest (see [3,5]); For any component G_{27} , we root it at a 7-vertex. In this case, every 2-vertex has exactly one parent and exactly one child, which are 7-vertices.
- (c) *G* contains no edge uv with min $\{d(u), d(v)\} \leq \lfloor \frac{\Delta}{2} \rfloor$ and $d(u) + d(v) \leq \Delta + 1$ (see [5]);
- (d) G contains no 3-face incident with more than one 4-vertex (see [10]);
- (e) If v is a 7-vertex of G with $n_2(v) \ge 1$, then $n_{4^+}(v) \ge 1$ (see [6]).

Lemma 2. G contains no configurations depicted in Fig. 1, where the vertices marked by • have no other neighbors in G.

Proof. The proof that *G* contains no configurations depicted in Fig. 1(1),(2),(4),(5) can be found in [7]. The proof that *G* contains no configuration depicted in Fig. 1(3) and (6) can be found in [5,16], respectively.

Lemma 3. G contains no configurations depicted in Fig. 2, where the vertices marked by • have no other neighbors in G.

Proof. Suppose that *G* contains a configuration depicted in Fig. 2(1). Then $G' = G - vv_2$ has a total-8-coloring φ with the color set $C = \{1, 2, ..., 8\}$ by the minimality of *G*. Erase the color on v_2 . For a vertex $x \in V(G)$, let $C(x) = \{\varphi(xy) : y \in N(x)\}$. First, we color vv_2 as follows. If $|C(v_2) \cup C(v)| < 7$, then we can color vv_2 with a color in $C \setminus (\{\varphi(v)\} \cup C(v_2) \cup C(v)\}$. Otherwise, without loss of generality(WLOG), we assume that $(\varphi(vv_1), \varphi(vv_3), \varphi(vv_4), \varphi(vv_5), \varphi(v_2y), \varphi(v_2v_3), \varphi(v_2v_1), \varphi(v)) = (1, 2, 3, 4, 5, 6, 7, 8)$. If $C(v_4) \neq \{3, 5, 6, 7\}$, then we obtain a total-8-coloring of *G* by recoloring vv_4 with a color in $\{5, 6, 7\} \setminus C(v_4)$, and coloring vv_2 with 3. Otherwise, if $\varphi(v_4) = 1$, then we exchange the colors of edges v_3v_4 and vv_3 , color vv_2 with 2. Otherwise, we exchange the colors of edges v_1v_2 and vv_1 , color vv_4 with 1 and color vv_2 with 3. Hence we obtain a total-8-coloring ψ of *G* in which v_2 is uncolored.

Now we begin to recolor v_2 . Let α be the color on vv_2 and $D = C(v_2) \cup \{\alpha, 8\} \cup \{\varphi(x) : x \in N(v_2)\}$. If |D| < 8, then we obtain a total-8-coloring of *G* by recoloring v_2 with a color in $C \setminus D$, a contradiction. Otherwise C = D. WLOG, we assume that $v_2y, v_2v_1, v_2v, v_2v_3, y, v_1, v, v_3$ is colored with 1, 2, 3, 4, 5, 6, 7, 8. First, we have 5, 6, $8 \in C(v)$, for otherwise, we recolor vv_2 with a color in $\{5, 6, 8\} \setminus C(v)$, and v_2 with 3, a contradiction. Since d(v) = 5 and $\{3, 5, 6, 8\} \subset C(v)$, color 2 or 4 does not appear at v, WLOG, $4 \notin C(v)$. If $\varphi(vv_3) \in \{5, 6\}$, then we exchange the colors of edges v_2v_3 and vv_3 , recolor v_2 with 4. Otherwise, $\varphi(vv_3) \in \{1, 2\}$. If $\varphi(vv_3) = 1$, then we exchange the colors of edges vv_1 and v_2v_1 , color v_2 with 2. Otherwise, we exchange the colors of edges vv_1 and v_2v_1 , color v_2 with 2. Otherwise, we exchange the colors of edges vv_1 and v_2v_1 , color v_2 with 2. Otherwise, we exchange the colors of edges vv_1 and v_2v_1 , color v_2 with 2. Otherwise, we exchange the colors of edges vv_1 and v_2v_1 , v_2v_3 and vv_3 , and recolor v_2 with 4, a contradiction, too.

Suppose that *G* contains a configuration depicted in Fig. 2(2), where d(v) = 7. Then $G' = G - vv_7$ has a total-8-coloring φ . Erase the colors on all black 3⁻-vertices. For a vertex $x \in V(G)$, let $C(x) = \{\varphi(xy) : y \in N(x)\}$. If $\varphi(v_7x_7) \in C(v) \cup \{\varphi(v)\}$,

Download English Version:

https://daneshyari.com/en/article/419334

Download Persian Version:

https://daneshyari.com/article/419334

Daneshyari.com