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a b s t r a c t

A total k-coloring of a graph G is a coloring of V (G) ∪ E(G) using k colors such that no two
adjacent or incident elements receive the same color. The total chromatic number of G is
the smallest integer k such that G has a total k-coloring. In this paper, it is proved that if G is
a planar graph with maximum degree∆ ≥ 7 and without chordal 6-cycles, then the total
chromatic number of G is∆+ 1.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite andundirected, andwe follow [2] for the terminologies andnotations
not defined here. Let G be a graph. We use V (G), E(G),∆(G) and δ(G) (or simply V , E,∆ and δ) to denote the vertex set, the
edge set, the maximum degree and the minimum degree of G, respectively.

A total k-coloring of a graph G is a coloring of V ∪ E using k colors such that no two adjacent or incident elements receive
the same color. The total chromatic number χ ′′(G) of G is the smallest integer k such that G has a total k-coloring. Clearly,
χ ′′(G) ≥ ∆ + 1. Behzad [1] and Vizing [14] posed independently the following famous conjecture, which is known as the
total coloring conjecture (TCC).

Conjecture A. For any graph G,∆+ 1 ≤ χ ′′(G) ≤ ∆+ 2.

This conjecture was confirmed for general graphs with∆ ≤ 5. For its history, readers can see [19]. For planar graphs, the
only open case is ∆ = 6 (see [8,11]). Interestingly, planar graphs with high maximum degree allow a stronger assertion,
that is, every planar graph with highmaximum degree∆ has a total (∆+1)-coloring. This result was first established in [3]
for∆ ≥ 14, which was extended to∆ ≥ 12 [4],∆ ≥ 10 [15], and finally to∆ ≥ 9 [9]. Recently, Shen andWang [12] proved
that if G is a planar graph with ∆ = 8 and G contains no chordal 5-cycles or no chordal 6-cycles, then χ ′′(G) = ∆ + 1.
Wang andWu [17] proved that if G is a planar graph with∆ ≥ 7 and every vertex is incident with at most one triangle, then
χ ′′(G) = ∆+1.Wang andWu [18] proved that if G is a planar graph with∆ ≥ 7 and without 4-cycles, then χ ′′(G) = ∆+1
(later, it is extended to ∆ ≥ 6 by Shen and Wang [13]). Wang et al. [16] proved that if G is a planar graph with ∆ ≥ 7 and
without chordal 5-cycles, then χ ′′(G) = ∆+ 1. In this paper, we obtain that if G is a planar graph with∆ ≥ 7 and without
chordal 6-cycles, then χ ′′(G) = ∆ + 1. To prove the result, we first establish various structural properties of G. Relying on
these properties, we use the discharging method in the detailed proof to obtain a contradiction.
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Fig. 1. Reducible configurations.

2. Main result and its proof

Wewill introduce some more notations and definitions here for convenience. Let G = (V , E, F) be a plane graph, where
F is the face set of G. For a vertex v ∈ V , let N(v) denote the set of vertices adjacent to v, and let d(v) = |N(v)| denote the
degree of v; and for a face f , the degree of a face f , denoted by d(f ), is the number of edges incident with it, where each
cut-edge is counted twice. A k-vertex, a k+-vertex or a k−-vertex is a vertex of degree k, at least k or at most k, respectively.
Similarly, a k-face or a k+-face is a face of degree k or at least k, respectively. Let nt(v) be the number of t-vertices adjacent
to a vertex v, and fk(v) the number of k-faces incident with v. Especially, let f3(v) = t . Let v1, v2, . . . , vd be neighbors
of v in an anticlockwise order. Let fi be face incident with v, vi and vi+1, for all i such that i ∈ {1, 2, . . . , d}. Note that
all the subscripts in the paper are taken modulo d. For convenience, (d1, d2, . . . , dn) denotes a cycle (or a face) whose
boundary vertices are of degree d1, d2, . . . , dn in the anticlockwise order. Specially, (i, j+, k+)-face is a 3-face uvw such
that d(u) = i ≤ j ≤ d(v) ≤ k ≤ d(w).

Theorem 1. Let G be a planar graph without chordal 6-cycles. If ∆ ≥ 7, then χ ′′(G) = ∆+ 1.

Proof. In [12], Theorem 1 was established for ∆ = 8. So we assume that ∆ = 7. Let G be a minimal counterexample to
Theorem1 in terms of the number of vertices and edges, respectively. Then every proper subgraph ofG has a total 8-coloring,
but G is not. We first show some known properties on G.

(a) G is 2-connected and the boundary of each face in G is exactly a cycle (see [5]);
(b) The subgraph G27 of G induced by all edges joining 2-vertices to 7-vertices is a forest (see [3,5]);

For any component G27, we root it at a 7-vertex. In this case, every 2-vertex has exactly one parent and exactly one
child, which are 7-vertices.

(c) G contains no edge uv with min{d(u), d(v)} ≤ ⌊
∆

2 ⌋ and d(u)+ d(v) ≤ ∆+ 1 (see [5]);
(d) G contains no 3-face incident with more than one 4-vertex (see [10]);
(e) If v is a 7-vertex of Gwith n2(v) ≥ 1, then n4+(v) ≥ 1 (see [6]).

Lemma 2. G contains no configurations depicted in Fig. 1, where the vertices marked by • have no other neighbors in G.

Proof. The proof that G contains no configurations depicted in Fig. 1(1),(2),(4),(5) can be found in [7]. The proof that G
contains no configuration depicted in Fig. 1(3) and (6) can be found in [5,16], respectively. �

Lemma 3. G contains no configurations depicted in Fig. 2, where the vertices marked by • have no other neighbors in G.

Proof. Suppose that G contains a configuration depicted in Fig. 2(1). Then G′
= G − vv2 has a total-8-coloring ϕ with the

color set C = {1, 2 . . . , 8} by theminimality of G. Erase the color on v2. For a vertex x ∈ V (G), let C(x) = {ϕ(xy) : y ∈ N(x)}.
First,we color vv2 as follows. If |C(v2)∪C(v)| < 7, thenwe can color vv2 with a color in C\({ϕ(v)}∪C(v2)∪C(v)). Otherwise,
without loss of generality(WLOG), we assume that (ϕ(vv1), ϕ(vv3), ϕ(vv4), ϕ(vv5), ϕ(v2y), ϕ(v2v3), ϕ(v2v1), ϕ(v)) =

(1, 2, 3, 4, 5, 6, 7, 8). If C(v4) ≠ {3, 5, 6, 7}, then we obtain a total-8-coloring of G by recoloring vv4 with a color in
{5, 6, 7} \ C(v4), and coloring vv2 with 3. Otherwise, if ϕ(v4) = 1, then we exchange the colors of edges v3v4 and vv3,
color vv2 with 2. Otherwise, we exchange the colors of edges v1v2 and vv1, color vv4 with 1 and color vv2 with 3. Hence we
obtain a total-8-coloring ψ of G in which v2 is uncolored.

Now we begin to recolor v2. Let α be the color on vv2 and D = C(v2) ∪ {α, 8} ∪ {ϕ(x) : x ∈ N(v2)}. If |D| < 8, then we
obtain a total-8-coloring of G by recoloring v2 with a color in C \D, a contradiction. Otherwise C = D. WLOG, we assume that
v2y, v2v1, v2v, v2v3, y, v1, v, v3 is colored with 1, 2, 3, 4, 5, 6, 7, 8. First, we have 5, 6, 8 ∈ C(v), for otherwise, we recolor
vv2 with a color in {5, 6, 8} \ C(v), and v2 with 3, a contradiction. Since d(v) = 5 and {3, 5, 6, 8} ⊂ C(v), color 2 or 4 does
not appear at v, WLOG, 4 ∉ C(v). If ϕ(vv3) ∈ {5, 6}, then we exchange the colors of edges v2v3 and vv3, recolor v2 with 4.
Otherwise, ϕ(vv3) ∈ {1, 2}. If ϕ(vv3) = 1, then we exchange the colors of edges vv1 and v2v1, color v2 with 2. Otherwise,
we exchange the colors of edges vv1 and v2v1, v2v3 and vv3, and recolor v2 with 4, a contradiction, too.

Suppose that G contains a configuration depicted in Fig. 2(2), where d(v) = 7. Then G′
= G − vv7 has a total-8-coloring

ϕ. Erase the colors on all black 3−-vertices. For a vertex x ∈ V (G), let C(x) = {ϕ(xy) : y ∈ N(x)}. If ϕ(v7x7) ∈ C(v)∪ {ϕ(v)},
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