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a b s t r a c t

Let A be a family of subsets of an n-set such that A does not contain distinct sets A and
B with |A \ B| = 2|B \ A|. How large can A be? Our aim in this note is to determine the
maximum size of such an A. This answers a question of Kalai. We also give some related
results and conjectures.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A set system A ⊆ P [n] = P ({1, . . . , n}) is said to be an antichain or Sperner family if A ⊄ B for all distinct A, B ∈ A.
Sperner’s theorem [5] says that any antichain A has size at most


n

⌊n/2⌋


. (See [2] for general background.)

Kalai [3] noted that the antichain condition may be restated as: A does not contain A and B such that, in the subcube of
the n-cube spanned by A and B, they are the top and bottom points. He asked what happens if we ‘tilt’ this condition. For
example, suppose that we instead forbid A, B such that A is 1/3 of the way up the subcube spanned by A and B? Equivalently,
A cannot contain two sets A and Bwith |A \ B| = 2|B \ A|.

An obvious example of such a system is any level set [n](i) = {A ⊂ [n] : |A| = i}. Thus we may certainly achieve size
n

⌊n/2⌋


. The system [n](⌊n/2⌋) is not maximal, as we may for example add to it all sets of size ⌊n/4⌋ − 1—but that is a rather

small improvement. Kalai [3] asked if, as for Sperner families, it is still true that our family A must have size o(2n).
Our aim in this note is to verify this.We show that themiddle layer is asymptotically best, in the sense that themaximum

size of such a family is (1+ o(1))


n
⌊n/2⌋


. We also find the exact extremal system, for n even and sufficiently large. We give

similar results for any particular ‘forbidden ratio’ in the subcube spanned.
What happens if, instead of forbidding a particular ratio, we instead forbid an absolute distance from the bottom point?

For example, for distance 1 this would correspond to the following: our set system A must not contain sets A and B with
|A \ B| = 1. How large can A be?

Here the situation is rather different, as for example one cannot take an entire level. We give a construction that has size
about 1

n


n

⌊n/2⌋


, which is about (a constant fraction of) 1/n3/2 of the whole cube. But we are not able to show that this is

optimal: the best upper bound that we are able to give is 2n/n. However, if we strengthen the condition to A not having A
and B with |A \ B| ≤ 1 then we are able to show that the greatest family has size 1

n


n

⌊n/2⌋


, up to a multiplicative constant.
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2. Forbidding a fixed ratio

In this section we consider the problem of finding the maximum size of a family A of subsets of [n] which satisfies
p|A\B| ≠ q|B\A| for all A, B ∈ Awhere p : q is a fixed ratio. Initially wewill focus on the first non-trivial case 1:2 (note that
1:1 is trivial as then the condition just forbids two sets of the same size in A) and then at the end of the section we extend
these results to any given ratio.

As mentioned in the Introduction, for the ratio 1:2 we actually obtain the extremal family when n is even and sufficiently
large. This family, which we will denote by B0, is a union of level sets: B0 = ∪i∈I [n](i). Here the set I is defined as follows:
I = {ai : i ≥ 0} ∪ {bi : i ≥ 0}, where a0 = b0 =

n
2 and ai and bi are defined inductively by taking ai = ⌈

ai−1
2 ⌉ − 1 and

bi = ⌊
bi−1+n

2 ⌋ + 1 for all i. For example, if n = 2k then I = {2k−1
} ∪ {2i

− 1 : 0 ≤ i ≤ k− 1} ∪ {2k
− 2i

+ 1 : 0 ≤ i ≤ k− 1}.
Noting that for any sets A and B with either (i) |A| = l where l < n

2 and |B| > 2l or (ii) |A| = l where l > n
2 and |B| < 2l − n

we have |A \ B| ≠ 2|B \ A|, we see that B0 satisfies the required condition. Our main result is the following.

Theorem 1. Suppose A is a set system on ground set [n] such that |A \ B| ≠ 2|B \ A| for all distinct A, B ∈ A. Then
|A| ≤ (1 + o(1))


n

⌊n/2⌋


. Furthermore, if n is even and sufficiently large then |A| ≤ |B0|, with equality if and only if A = B0.

The main step in the proof of Theorem 1 is given by the following lemma. The proof is a Katona-type (see [4]) averaging
argument.

Lemma 2. Let A be a set system on [n] such that |A \ B| ≠ 2|B \ A| for all distinct A, B ∈ A. Then
2l
j=l

|Aj|
n
j

 ≤ 1

for all l ≤ n
3 and

k
j=2k−n

|Aj|
n
j

 ≤ 1

for all k ≥
2n
3 , where Aj = A ∩ [n](j).

Proof. We only prove the first inequality, as the proof of the second is identical. Pick a random ordering of [n] which we
denote by (a1, a2, . . . , a⌈

2n
3 ⌉

, b1, . . . , b⌊
n
3 ⌋). Given this ordering, let Ci = {aj : j ∈ [2i]} ∪ {bk : k ∈ [i + 1, l]} and let

C = {Ci : i ∈ [0, l]}. Consider the random variable X = |A ∩ C|. Since each set B ∈ [n](i) is equally likely to be Ci−l we have
P[B ∈ C] =

1
( n

i )
. Thus by linearity of expectation we have

E(X) =

2l
i=l

|Ai| n
i

 . (1)

On the other hand, given any Ci, Cj with i < jwe have |Ci \ Cj| = 2|Cj \ Ci| and so A can contain at most one of these sets.
This gives E(X) ≤ 1. Together with (1) this gives the claimed inequality

2l
i=l

|Ai| n
i

 ≤ 1. �

Proof of Theorem 1. We first show |A| ≤ (1 + o(1))


n
⌊n/2⌋


. By standard estimates (see e.g. Appendix A of [1]) we have

|[n](≤αn)
∪[n](≥(1−α)n)

| = o(


n
⌊n/2⌋


) for any fixed α ∈ [0, 1

2 ), so it suffices to show that |
 3n

5
i= 2n

5
Ai| ≤


n
n
2


. But this follows

immediately from Lemma 2 by taking l = ⌊
n
3⌋.

We now prove the extremal part of the claim in Theorem 1. We first show that the maximum of f (x) =
n

i=0 xi subject
to the inequalities

2l
j=l

xj
n
j

 ≤ 1, l ∈

0, 1, . . . ,

n
3


(2)

and
k

j=2k−n

xj
n
j

 ≤ 1, k ∈


2n
3


, . . . , n


(3)
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