Triple arrays and related designs

W.D. Wallis
Southern Illinois University, Carbondale, IL, 62901, USA

ARTICLE INFO

Article history:

Received 28 October 2010
Received in revised form 13 March 2013
Accepted 12 April 2013
Available online 11 May 2013

Keywords:

Block design
Array

Abstract

We consider a problem posed by Donald Preece more than 30 years ago. Let S be a set of 35 distinct elements. Construct a 7×15 rectangular array A, each of whose entries is a member of S, with no symbol repeated in any row or column, with the following properties: (P1) each symbol occurs precisely three times in the array; (P2) any two distinct rows contain precisely five common symbols; (P3) any two distinct columns contain precisely one common symbol; (P4) any row and any column contain precisely three common symbols. We shall present a solution, survey related work, and look toward further problems.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We consider a problem posed by Donald Preece [18] at the Aberystwyth and Adelaide conferences, more than 30 years ago.

Let S be a set of 35 distinct elements. Construct a 7×15 rectangular array A, each of whose entries is a member of S, with no symbol repeated in any row or column, with the following properties:
(P1) each symbol occurs precisely three times in the array;
(P2) any two distinct rows contain precisely five common symbols;
(P3) any two distinct columns contain precisely one common symbol;
(P4) any row and any column contain precisely three common symbols.
If we interpret columns as treatments and symbols as blocks, then (P1) means $k=3$, (P 3) means $\lambda=1$, and A represents a balanced incomplete block design with

$$
v=15, \quad b=35, \quad r=7, \quad k=3, \quad \lambda=1
$$

(the original Steiner triple systems).
If we interpret rows as treatments and symbols as blocks, then (P1) and (P2) mean A represents a balanced incomplete block design with

$$
v=7, \quad b=35, \quad r=15, \quad k=3, \quad \lambda=5
$$

(five times parameters of a Fano plane).
No solution was found for a quarter of a century when one was given in [15]. In this paper we shall describe the family of which Preece's design is a member, present a solution, and discuss some related ideas.

[^0]
2. Background

We assume the standard definitions and notations for combinatorial designs. We shall need to reference the two standard parameter relations

$$
\begin{align*}
& v r=b k \tag{1}\\
& \lambda(v-1)=r(k-1) \tag{2}
\end{align*}
$$

The usual definition of a balanced incomplete block design requires that $k<v$ ("the blocks are incomplete"), but we shall find it convenient to allow the trivial case where $k=v$.

A binary row-column design is a rectangular array whose entries are members of some set of treatments, with no repetitions in any row or column. If such a design has r rows, c columns, and v treatments which form a v-set V, then it is an $r \times c$ binary row-column design based on V. Such an array is also called the Latin rectangle, although some authors reserve this term for the case where c (or r) is equal to v. A binary row-column design is called equireplicate if every member of V appears the same number of times in the array; this common number is then called the replication number of the design.

Among binary row-column designs, perhaps the best-known is the Latin square, the designs with $r=c=v$, which are easily seen to exist for all values of v. Another important class is Youden squares. A Youden square is a $k \times v$ array based on a (v, k, λ)-SBIBD. Each column contains the elements of one block, ordered so that each element appears exactly once in each row. It was shown in [26] that such an ordering is always possible; that is, every symmetric balanced incomplete block design gives rise to a Youden square. (In fact, it is common for many non-isomorphic Youden squares to arise from the same SBIBD.)

When discussing binary row-column designs, we shall often need to refer to the set of all elements of a row, ignoring the arrangement of the elements into columns. It will be convenient to extend the usage in design theory and refer to this set as the support of the row, and similarly for columns.

3. Double arrays

The class of binary row-column designs that include Preece's example was defined by Agrawal [1], although a small example was discussed earlier by Potthoff [16] and another was published by Preece [17] independently of Agrawal's paper. We shall introduce these designs below under the name of triple arrays. We begin by introducing a more general class, double arrays.

Suppose \mathcal{A} is an equireplicate $r \times c$ binary row-column design based on V, with replication number k, having the following properties:
(P1) any two distinct rows have the same number, $\lambda_{r r}$, of common elements;
(P2) any two distinct columns have the same number, $\lambda_{c c}$, of common elements.
Then \mathcal{A} is a double array with parameters $v, k, \lambda_{r r}, \lambda_{c c}$, or

$$
D A\left(v, k, \lambda_{r r}, \lambda_{c c}: r \times c\right)
$$

Associated with any double array are two balanced incomplete block designs. To construct them, suppose the rows of a $D A\left(v, k, \lambda_{r r}, \lambda_{c c}: r \times c\right)$ are labeled as $R_{1}, R_{2}, \ldots, R_{r}$ and the columns are labeled as $C_{1}, C_{2}, \ldots, C_{c}$. Then the row design or $B I B D_{R}$ has v blocks $B_{1}, B_{2}, \ldots, B_{v}$, corresponding to the v elements of V : if element x appears in rows $R_{a}, R_{b}, \ldots, R_{z}$ then $B_{x}=\{a, b, \ldots, z\}$. Similarly the column design or $B I B D_{C}$ is defined using the incidence of elements in columns.

Lemma 3.1. Suppose \mathcal{A} is a $D A\left(v, k, \lambda_{r r}, \lambda_{c c}: r \times c\right)$. Then
(i) the row design of \mathcal{A} is a balanced incomplete block design with parameters

$$
\left(r, v, c, k, \lambda_{r r}\right)
$$

(ii) the column design of \mathfrak{A} is a balanced incomplete block design with parameters

$$
\left(c, v, r, k, \lambda_{c c}\right) .
$$

Theorem 3.2. Any $D A\left(v, k, \lambda_{r r}, \lambda_{c c}: r \times c\right)$ satisfies

$$
\begin{align*}
& v k=r c, \tag{3}\\
& \lambda_{r r}(r-1)=c(k-1), \tag{4}\\
& \lambda_{c c}(c-1)=r(k-1), \tag{5}\\
& \lambda_{r r} r(r-1)=\lambda_{c c} c(c-1) . \tag{6}
\end{align*}
$$

Proof. Eq. (3) follows from applying (1) to either of the designs associated with \mathcal{A}. Eqs. (4) and (5) are just (2), for the $B I B D_{R}$ and $B I B D_{C}$ respectively. Eq. (6) is obtained by combining (4) and (5).

https://daneshyari.com/en/article/419355

Download Persian Version:

https://daneshyari.com/article/419355

Daneshyari.com

[^0]: E-mail address: wdwallis@math.siu.edu.
 0166-218X/\$ - see front matter © 2013 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/j.dam.2013.04.010

