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several other characterizations, some leading to efficient algorithms for testing whether
a finite word is Sturmian. These algorithms find important applications in areas such as
pattern recognition, image processing, and computer graphics. Recently, Blanchet-Sadri
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Iézmoi;ist'mics on words and Lensmire considered finite semi-Sturmian words of minimal length and provided an
Graph theory algorithm for generating all of them using techniques from graph theory. In this paper, we
Subword complexity exploit their approach in order to count the number of minimal semi-Sturmian words. We
Semi-Sturmian words also present some other results that come from applying this graph theoretical framework
Euler’s totient function to subword complexity.
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1. Introduction

An infinite word w is an infinite sequence of letters from a finite alphabet. Any finite block of consecutive letters of w is
a factor or subword of w. The word w is Sturmian if, for all non-negative integers n, there are exactly n + 1 distinct subwords
of w of length n. In other words, the subword complexity p,, (n) of w, which counts the number of distinct subwords of length
nof w, is equal to n + 1. The fact p,,(1) = 1+ 1 = 2 implies that w is constructed from two distinct letters of the alphabet.
Without loss of generality, we call these a and b. The well-known Fibonacci word

abaababaabaababaababaabaababaabaab . . .

is Sturmian. It is defined by F, ., = F,;1F,, where Fy = a and F; = ab.

Sturmian words have been widely studied. Morse and Hedlund introduced the term “Sturmian trajectories” and did a first
comprehensive study in 1940 in relation to symbolic dynamics [13]. Chapter 2 of Lothaire’s book “Algebraic Combinatorics
on Words” provides a systematic exposition of Sturmian words, their numerous properties, and equivalent definitions [11].
Sturmian words appear in the literature under various names: rotation sequences, cutting sequences, Christoffel words,
Beatty sequences, characteristic words, balanced words, nonhomogeneous spectra, billiard trajectories, etc. Application
areas include linear filters [ 10], routing in networks [ 1], pattern recognition [5], image processing and computer graphics [6].
For example, counting the number of distinct digitized straight lines corresponds to counting the number of subwords of a
given length in Sturmian words. A formula was conjectured by Dulucq and Gouyou-Beauchamps in [8] and later proved by
Mignosi in [12].
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A finite word w is Sturmian if it is a subword of an infinite Sturmian word. Linear-time algorithms have been provided
for recognizing finite Sturmian words (see for example, Boshernitzan and Fraenkel [4] and de Luca and De Luca [7]). Berstel
and Pocchiola also provided a linear probabilistic algorithm for generating randomly finite Sturmian words [2].

Now, a finite word w is semi-Sturmian of order N if p,,(n) = n+1forn = 1, ..., N. Note that the terminology Sturmian of
order N was previously used by Blanchet-Sadri and Lensmire in [3] for such word, but we decided to adopt the terminology
“semi-Sturmian” here to avoid confusion with finite Sturmian words. Not all semi-Sturmian words of order N are Sturmian,
for instance, aabb is a semi-Sturmian word of order 2 but it is not a subword of any infinite Sturmian word. However every
finite Sturmian word is semi-Sturmian of order N for some N. A semi-Sturmian word of order N is minimal if it has minimal
length among all semi-Sturmian words of order N. Equivalently, it is minimal if it has length 2N. In [3], Blanchet-Sadri and
Lensmire described an algorithm that generates all minimal semi-Sturmian words of each order N > 3. Earlier in [14], it
had been shown that the minimal length of a word w such that p,,(n) = F,y, foralln,1 < n < N, is Fy + Fy,2, where
(Fn)n>1 1s the Fibonacci sequence and N is a positive integer, and an algorithm had been given for generating such minimal
words of each order N > 1.

In this paper, our main result is to count the number of minimal semi-Sturmian words of order N for every integer N
greater than 1. We show that this number is connected to Euler’s totient function ¢ from number theory, where the totient
¢(n) of a positive integer n is the number of positive integers less than or equal to n that are coprime to n.

The contents of our paper is as follows. In Section 2, we review some basics on semi-Sturmian graphs and some graphs
corresponding to given sets of words of a fixed length. We also recall conditions for the existence of Eulerian paths in graphs.
In Section 3, we consider minimal words with subword complexity n + 1, that is, minimal semi-Sturmian words. We count
all minimal semi-Sturmian words of order N using a graph theoretical approach based on the above mentioned algorithm
that generates all such words. We show that any graph produced by this algorithm belongs to one of three families of semi-
Sturmian graphs that end up playing an important role in the counting. In Section 4, we use our techniques to extend our
result further to include a lower bound on the number of minimal words with subword complexity n 4+ k — 1, where k is
the alphabet size.

2. Preliminaries on graphs

We recall some graph theoretical concepts that will be useful. All graphs in this paper are assumed to be directed. The
reader is referred to [9] for more information.

A graph G is said to be semi-Sturmian of order n if G has n vertices, n + 1 edges, and contains an Eulerian path. The graph
G is also said to be semi-Sturmian if it is semi-Sturmian of some order n. Moreover for any graph G = (V, E), we denote by
L(G) its line graph which is the graph G’ = (V’, E’) where V/ = E, and for all v/, vj € V’, (v}, v}) € E"if v} = (v1, v2) and
vy = (vy, v3) for some vy, v,, v3 € V. Fig. 1(c) gives the line graph of Fig. 1(b).

Now, let S be a set of words of length n. Combining ideas from de Bruijn and Rauzy graphs, the graph Gs = (V, E), defined
in [3], is as follows: V is the set of all factors of length n — 1 of words in S, and E consists of all edges (x, X") so that there
exists aword y € S with x as a prefix and x’ as a suffix. The edge (x, x’) can be identified (or labelled) with the word y. See
Fig. 1(a) for an example where S = {aa, ab, ba, bb}.

It is worth noting that every path in a graph of the form Gs corresponds to a word. More specifically, let xq, ..., x;; be a
pathin Gs where xo, . . ., x,, are vertices. Then this path corresponds to the word w where w[0...n—1) = xo, w[1...n) =
X1, ..., w[|lw| —n+1...|w|) = X, (here m = |w| — n 4 1). Moreover if p and g are different paths, then they correspond

to different words. A similar construction allows us to view every path in the graphs L(Gs), L(L(Gs)), . .. as a word. We say
that if p is a path in some subgraph of L(- - - (L(Gs)) - - -), then p corresponds to a word.

We end this section with a well-known result on the existence of Eulerian paths. The notation ideg(v) refers to the
indegree of vertex v and odeg(v) to its outdegree.

Lemma 1. Let G be a graph, and let x and y be vertices in G.

e If x =y, then there is an Eulerian path from x to y if and only if G is strongly connected and ideg(v) = odeg(v) for all v.
o If x # y, then there is an Eulerian path from x to y if and only if G is weakly connected, ideg(x) = odeg(x) — 1, ideg(y) =
odeg(y) + 1, and ideg(v) = odeg(v) for all other vertices v.

3. Our main result

Our main goal is to prove the following result. Recall that the Euler totient ¢ (n) of a positive integer n is the number of
positive integers less than or equal to n that are coprime to n. For example, ¢(9) = 6since 1, 2, 4, 5, 7 and 8 are coprime to 9.

Theorem 1. For N > 2, the number of minimal semi-Sturmian words of order N, S(N), satisfies

N
S(N) =6+ 4 (Z¢<n)) + (N = DN + 1)

n=3
where ¢ (n) is the Euler totient function.

We begin by recalling an algorithm due to Blanchet-Sadri and Lensmire [3], which we illustrate in Fig. 1.
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